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Part I

Motivations
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High-level vs. algebraic properties [M. Zeitoun]

Language L Synt(L)
Logical

definability

Star-free A FO[<], LTL

[Schützenberger 65, McNaughton-P. 71, Kamp 68]

Piecewise testable J Bool(Σ1)

[Simon 75,Thomas 87]

Unambiguous star-free DA
FO

2[<],

UTL, Σ2 ∩ Π2

[Sch76, SchThV01, ThW98, EVW97, PW97]
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Virtuous circle 1

First order

logic

Star-free

languages

xω = xω+1Aperiodic

monoids

DecidabilitySchützenberger 65

Mc Naughton 71
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Virtuous circle 2

BΣ1

formulas

Piecewise testable

languages

xω = xω+1

(xy)ω = (yx)ω

J -trivial

monoids

DecidabilityI. Simon 75

Thomas 87
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Virtuous circle 3

FO
2[<]

Σ2 ∩ Π2

Unambiguous

star-free

xω = xω+1

(xy)ω(yx)ω(xy)ω = (xy)ω
DA

DecidabilitySchützenberger 76

SchThV 01, ThW 98

EVW 97, PW 97
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Part II

Lattices of languages
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Lattices of languages

Let A be a finite alphabet. A lattice of languages is
a set of regular languages of A∗ containing ∅ and A∗

and closed under finite intersection and finite union.

Let u and v be words of A∗. A language L of A∗

satisfies the equation u → v if

u ∈ L ⇒ v ∈ L
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Finite lattices of languages

Proposition

Let E be a set of equations of the form u → v.

Then the languages of A∗ satisfying the equations

of E form a lattice of languages.

Proposition

Let L, L1, . . . , Ln be languages. If L satisfies all the

equations satisfied by L1, . . . , Ln, then L belongs to

the lattice of languages generated by L1, . . . , Ln.
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Proof

Let L, L1, . . . , Ln be languages. If L satisfies all the

equations satisfied by L1, . . . , Ln, then L belongs to

the lattice of languages generated by L1, . . . , Ln.

Indeed
L =

⋃

I∈F

⋂

i∈I

Li

where F is the set of all subsets I of {1, . . . , n} for
which there exists a word v ∈ L such that v ∈ Li if
and only if i ∈ I.
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Characterization of finite lattices of languages

Proposition

A finite set of languages of A∗ is a lattice of

languages iff it can be defined by a set of equations

of the form u → v with u, v ∈ A∗.

The lattice generated by the languages A∗aA∗ (with
a ∈ A) is defined by the equations ab ↔ ba, aa ↔ a
and xy → xay, for all a, b ∈ A and all x, y ∈ A∗.

FO
1 is defined by the equations ab ↔ ba and

aa ↔ a, for all a, b ∈ A.
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Lattices and equations

There is an equational theory for finite lattices of
languages.

What about infinite lattices?
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Lattices and equations

There is an equational theory for finite lattices of
languages.

What about infinite lattices?

One needs the profinite world...
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Birkhoff’s variety theorem

A monoid is commutative iff it satisfies the identity
xy = yx. A monoid is idempotent iff it satisfies the
identity x2 = x.

Birkhoff’s variety theorem. A class of monoids is
defined by a set of identities iff it is a variety, i.e. is
closed under taking submonoids, quotient monoids
and (possibly infinite!) direct products.

What about finite monoids?
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Birkhoff’s variety theorem

A monoid is commutative iff it satisfies the identity
xy = yx. A monoid is idempotent iff it satisfies the
identity x2 = x.

Birkhoff’s variety theorem. A class of monoids is
defined by a set of identities iff it is a variety, i.e. is
closed under taking submonoids, quotient monoids
and (possibly infinite!) direct products.

What about finite monoids?

One needs the profinite world...
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Part III

The profinite world

Citation (M. Stone)

A cardinal principle of modern mathematical

research may be stated as a maxim: One must

always topologize.
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Overview

The set of profinite words is

• The completion of the discrete space A∗,
equipped with the profinite metric.

• The projective limit of the directed system of
finite monoids.

• The set of implicit operations on A∗

• The Stone dual of the Boolean algebra of
regular languages.
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Separating words

A monoid M separates two words u and v of A∗ if
there exists a monoid morphism ϕ : A∗ → M such
that ϕ(u) 6= ϕ(v).

• The morphism u → |u| mod 2 (from A∗ into
Z/2Z) separates abaabaaba and abaabaabab.

• Similarly, for each letter a, one can count the
number of a modulo n.

• Let M = {1, x, y} with xx = yx = x and
xy = yy = y. Let ϕ : {a, b}∗ → M defined by
ϕ(a) = x and ϕ(b) = y. For each u, ϕ(ua) = x and
ϕ(ub) = y. Thus ϕ separates ua from ub.
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Separating words

Proposition

One can always separate two distinct words by a

finite monoid.

Proof. Let u 6= v and let η : A∗ → M be the
syntactic morphism of the language {u}.

Suppose that η(u) = η(v). Then v ∈ η−1(η{u})
and thus v = u since η−1(η{u}) = {u}.
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The profinite metric

Let u and v be two words. Put

r(u, v) = min
{
|M | M is a finite monoid

that separates u and v
}

d(u, v) = 2−r(u,v)

Then d is an ultrametric, that is, for all x, y, z ∈ A∗,

(1) d(x, y) = 0 ⇐⇒ x = y,

(2) d(x, y) = d(y, x),

(3) d(x, z) 6 max{d(x, y), d(y, z)}
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The free profinite monoid

The completion of the metric space (A∗, d) is the

free profinite monoid on A and is denoted by Â∗. It
is a compact space, whose elements are called
profinite words.

The concatenation product is uniformly continuous

on A∗ and can be extended by continuity to Â∗.

Any morphism ϕ : A∗ → M , where M is a
(discrete) finite monoid is uniformly continuous and
extends in a unique way to a uniformly continuous

morphism ϕ̂ : Â∗ → M .
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Main properties of d

Intuitively, two words are close for d if one needs a
large monoid to separate them.

A sequence of profinite words un converges to a
profinite word u iff, for every morphism ϕ from A∗

to a finite monoid, the sequence ϕ̂(un) is ultimately
equal to ϕ̂(u).
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The free profinite monoid as a projective limit

For each pair of surjective morphisms f : A∗ → M
and g : A∗ → N such that N is a quotient of M ,
choose a surjective morphism πf,g : M → N such
that g = πf,g ◦ f . Make this choice compatible, in
the sense that πf,h = πg,h ◦ πf,g.

A∗

M N R

f g h

πf,g πg,h

πf,h
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The free profinite monoid as a projective limit

The monoid Â∗ can be defined as the projective
limit of the directed system formed by the surjective
morphisms between finite A-generated monoids.

Consider the compact monoid

P =
∏

f :A∗→M

M

An element (sf)f :A∗→M of P is compatible if
πf,g(sf) = sg. The set of compatible elements is a

closed submonoid of P , equal to Â∗.
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Profinite words

A profinite word u is completely determined by the
elements ϕ̂(u), where ϕ : A∗ → M is a morphism
into a finite monoid.

Alternatively, one can define a profinite word as a
equivalence class of Cauchy sequences of words, for
the following equivalence: two Cauchy sequences
x = (xn)n>0 and y = (yn)n>0 are equivalent if the
interleave sequence x0, y0, x1, y1, . . . is also a
Cauchy sequence.
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The free profinite monoid on one generator

The free monoid a∗ is isomorphic to N. The free
profinite monoid â∗ embeds into the product

(N ∪ {∞}) ×
∏

p prime

Zp

where Zp is the group of p-adic numbers.

The product Ẑ =
∏

p prime Zp is the group of

factoriadic integers. It is a subgroup of â∗ and thus
â∗ is uncountable.
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Factoriadic integers (after Lenstra)

Each natural number has a unique representation as

n = ck k! + · · · + c2 2! + c1 1!

where ck 6= 0 and 0 6 ci 6 i for 1 6 i 6 k. We
write n = (ck · · · c2c1)! . For instance 5 = (21)! and
25 = (1001)!.

A factoriadic integer is an infinite sequence
(. . . , c4, c3, c2, c1), where 0 6 ci 6 i for all i > 0.

The set of factoriadic integers is denoted by Ẑ.
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Addition of factoriadic integers

One can identify the natural number (ck · · · c2c1)!

with (. . . , 0, 0, ck, · · · , c1). Thus N embeds into Ẑ.

Addition is performed termwise, from right to left.
When the sum of the terms of rank i exceeds i, one
subtracts i + 1 from it and adds a carry of 1 to the
sum of the terms of rank i + 1. Observe that

(· · · , 5, 4, 3, 2, 1) + (· · · , 0, 0, 1) = (· · · , 0, 0, 0)

Therefore (· · · , 5, 4, 3, 2, 1) = −1, Ẑ is a

commutative group and Z embeds into Ẑ.
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The free profinite monoid â∗

The free profinite monoid â∗ is the disjoint union of
N and Ẑ.

To avoid any confusion, we set ω = (· · · , 0, 0, 0).
Then an element of â∗ is either a natural number n
or an element of the form ω + c, where c is a
factoriadic integer.

Addition is performed in the natural way:
n + m,
(ω + c) + n = ω + (c + n),
(ω + c) + (ω + d) = ω + (c + d)
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Idempotents in finite semigroups

Let x be an element of a finite semigroup S.

x x2 x3

. . .
xi+p = xi

xi+1 xi+2

xi+p−1
xω

For k > i, xk = xk+p. Thus, if ω is the smallest
multiple of p such that ω > i, say ω = qp, one has

(xω)2 = x2ω = xω+qp = xω

and thus xω is idempotent. Note that ω 6 |S|.
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A converging sequence in Â∗

Proposition

For each u ∈ Â∗, the sequence un! is a converging

sequence.

Let ϕ : A∗ → M be a morphism and let x = ϕ̂(u).
Then ϕ̂(un!) = xn!.

Further, x has an idempotent power xω, with
ω 6 |M |. Thus for n > |M |, n! is a multiple of ω
and xn! = xω.

Thus xn! is ultimately equal to xω and un! is a
converging sequence.
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The profinite operator ω

For each u ∈ A∗, the sequence un! is a converges in

Â∗ to a limit, denoted by uω.

uω = limn→∞ un!

This element is idempotent in Â∗.

In the same way, we set

uω−1 = limn→∞ un!−1 uω+1 = limn→∞ un!+1

Then uω−1uω = uωuω−1 = uω−1, uω−1uω+1 = uω

and uω+1uω = uωuω+1 = uω+1.
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Examples of profinite words

Every term in the signature (x, y) → xy, x → xω

and x → xω−1 is a profinite word.

Example:
((

(ab)ω(ba)ω
)ω+1

(ab)ω
)ω−1

Do we exhaust all profinite words this way?
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Examples of profinite words

Every term in the signature (x, y) → xy, x → xω

and x → xω−1 is a profinite word.

Example:
((

(ab)ω(ba)ω
)ω+1

(ab)ω
)ω−1

Do we exhaust all profinite words this way?

No, since Â∗ is uncountable. Worse, if |A| > 1, no

such term belongs to the minimal ideal K of Â∗.

Indeed, a profinite word w belongs to K iff it is
6J -below every finite word x: that is, w = pxs for
some profinite words p and s.



LIAFA, CNRS et Université Paris Diderot

Another profinite word

Let us fix a total order on the alphabet A. Let
u0, u1, . . . be the ordered sequence of all words of
A∗ in the induced shortlex order.

1, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, . . .
Reilly and Zhang (see also Almeida-Volkov) proved
that the sequence (vn)n>0 defined by

v0 = u0, vn+1 = (vnun+1vn)
(n+1)!

converges to an idempotent ρA of the minimal ideal

of Â∗.



LIAFA, CNRS et Université Paris Diderot

Part IV

Equational theory
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Reiterman’s theorem

A variety of finite monoids is a class of finite
monoids closed under taking submonoids, quotients
and finite products.

Let u and v be profinite words of Â∗. A finite
monoid satisfies the identity u = v if for each
morphism ϕ = A∗ → M , ϕ̂(u) = ϕ̂(v).

Theorem (Reiterman)

A class of finite monoids is defined by a set of

profinite identities iff it is a variety of finite monoids.
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Examples of identities

A finite monoid is aperiodic iff it satisfies the
identity xω+1 = xω.

A finite monoid is J -trivial iff it satisfies the
identities

xω+1 = xω and (xy)ωx = (xy)ω = y(xy)ω

iff it satisfies the identities
xω+1 = xω and (xy)ω = (yx)ω .

A finite monoid is in DA iff it satisfies the identities
xω+1 = xω and (xy)ω(yx)ω(xy)ω = (xy)ω.

A finite monoid is a group iff it satisfies the identity
xω = 1.
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Reiterman’s theorem for ordered monoids

A variety of finite ordered monoids is a class of
finite ordered monoids closed under taking
submonoids, quotients and finite products.

Let u and v be profinite words of Â∗. A finite
monoid satisfies the identity u 6 v if for each
morphism ϕ = A∗ → M , ϕ̂(u) 6 ϕ̂(v).

Theorem

A class of finite ordered monoids is defined by a set

of profinite identities of the form u 6 v iff it is a

variety of ordered finite monoids.
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Equations for regular languages

Let L be a regular language of A∗ and let
η : A∗ → M be its syntactic morphism.

Let L be the topological closure of L for the
profinite metric.

Définition

Let u and v be profinite words of Â∗. Then L
satisfies the equation u → v if the condition u ∈ L
implies v ∈ L.
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An equivalent definition

Let L be a regular language of A∗ and let
η : A∗ → M be its syntactic morphism.

Définition

Let u and v be profinite words of Â∗. Then L
satisfies the profinite equation u → v iff the

condition η̂(u) ∈ η(L) implies η̂(v) ∈ η(L).
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Equational theory of lattices

Given a set E of equations of the form u → v
(where u and v are profinite words), the set of all
regular languages of A∗ satisfying all the equations
of E is called the set of languages defined by E.

Theorem (Gehrke, Grigorieff, Pin 2008)

A set of regular languages of A∗ is a lattice of

languages iff it can be defined by a set of equations

of the form u → v, where u, v ∈ Â∗.
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An example:regular prefix codes

A set P of nonempty words is a prefix code if no
word of P is a strict prefix of another word of P .

Theorem (Daviaud and Paperman)

The lattice generated by the regular prefix codes is

defined by the equations uxω → y for x, u, y ∈ Â∗,

x 6= 1.
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Proof of the main theorem

Fancy proof: by Stone duality.

Proof by compacity.

Step 1. If L is regular, then L is clopen.

Step 2. The set

EL = {(u, v) ∈ Â∗ × Â∗ | L satisfies u → v}

is equal to (L
c
× Â∗) ∪ (Â∗ × L). Therefore it is

clopen in Â∗ × Â∗.

Let L be a lattice.
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Proof of the main theorem (2)

Step 3. Let K be a subset of L. The property :

K satisfies u → v ⇒ L satisfies u → v

holds iff (u, v) belongs to EL ∪
⋃

K∈K Ec
K.

Let L be a language satisfying the equations of L.

Step 4. If K = L, the relation ⇒ holds for every
pair (u, v). Therefore, EL ∪ {Ec

K | K ∈ L} is an

open cover of Â∗ × Â∗. By compacity, one can
extract a finite subcover EL ∪ {Ec

L1
, . . . , Ec

Ln

}.
Then L satisfies the equations of the lattice
generated by L1, . . . , Ln. Thus L belongs to L.
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Second day

Second day. . .
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Ordered minimal automaton

Let A be a finite alphabet. Denote by A∗ the free
monoid on A. A subset of A∗ is a language.

Let A = (Q, A, ·, i, F ) be a minimal deterministic
automaton. Define a relation 6 on Q by p 6 q iff
for each u ∈ A∗, (q ·u ∈ F ⇒ p·u ∈ F ).
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Minimal automaton of {a, b}∗aA∗b{b, c}∗

p 6 q iff for each u ∈ A∗, (q ·u ∈ F ⇒ p·u ∈ F ).
Here, the order is 3 < 2 < 1 < 0.

0

1 2 3

a, b, c

b a, c b, c

a
b

a

c
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Syntactic ordered monoid

Two possible definitions

(1) The transition monoid of the minimal ordered
automaton of L, ordered by u 6 v iff for each
q ∈ Q, q ·u 6 q ·v

(2) Abstract definition: syntactic preorder of L:
u 6L v iff, for every x, y ∈ A∗,

xvy ∈ L ⇒ xuy ∈ L

Syntactic ordered monoid of L : (A∗/∼L, 6L /∼L)
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Syntactic monoid of {a, b}∗aA∗b{b, c}∗

The order is 3 < 2 < 1 < 0.

0

1 2 3

a, b, c

b a, c b, c

a
b

a
c

1 a b c ab bc ca
1 2 1 0 3 0 0
2 2 3 2 3 3 2
3 2 3 3 3 2 2
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Syntactic order of {a, b}∗aA∗b{b, c}∗

ab

b

1 bc a

c

ca

1 1 2 3
a 2 2 2
b 1 3 3
c 0 2 3
ab 3 3 3
bc 0 3 2
ca 0 2 2
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The syntactic ordered monoid of (ab)∗

∗1

∗ab

∗bab

a

∗0

∗ab a b ∗ba

∗0

∗1

Figure: J -classes and syntactic order.
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Equations of the form u 6 v

We say that L satisfies the equation u 6 v if, for all

x, y ∈ Â∗, it satisfies the equation xvy → xuy.

Proposition

Let L be a regular language of A∗, let (M, 6L) be

its ordered syntactic monoid and let η : A∗ → M be

its syntactic morphism. Then L satisfies the

equation u 6 v iff η̂(u) 6L η̂(v).
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Lattices of languages closed under quotient

Let x, y ∈ A∗. The quotient of L by x and y is the
language x−1Ly−1 = {u ∈ A∗ | xuy ∈ L}.

A lattice of regular languages L is closed under
quotient if for all x, y ∈ A∗, L ∈ L implies
x−1Ly−1 ∈ L.

Theorem

A set of regular languages of A∗ is a lattice closed

under quotients iff it can be defined by a set of

profinite equations of the form u 6 v, where

u, v ∈ Â∗.
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Boolean algebras closed under quotient

If L satifies u → v, then Lc satisfies v → u.

We write u = v for u 6 v and v 6 u.

Theorem

A set of regular languages of A∗ is a Boolean

algebra closed under quotient iff it can be defined

by a set of profinite equations of the form u = v.
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Languages with zero

A language with zero is a language whose syntactic
monoid has a zero. The class of regular languages
with zero is closed under Boolean operations and
quotients. Therefore, it can be defined by a set of
equations of the form u = v.

Proposition

A regular language has a zero iff it satisfies the

equation xρA = ρA = ρAx for all x ∈ A∗.
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Nondense languages

A language L of A∗ is dense if, for each word
u ∈ A∗, L ∩ A∗uA∗ 6= ∅.

The nondense or full languages form a lattice closed
under quotients.

Theorem

A language of A∗ is nondense or full iff it satisfies

the equations xρA = ρA = ρAx and x 6 ρA for all

x ∈ A∗.
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Slender languages

The density of a language is the function

dL(n) = |L ∩ An|

A language is slender if its density is bounded by a
constant.

Proposition

A regular language is slender iff it is a finite union of

languages of the form xu∗y, where x, u, y ∈ A∗.
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Sparse languages

A language is sparse if its density is bounded by a
polynomial.

Proposition

A regular language is sparse iff it is a finite union of

languages of the form u0v
∗
1u1 · · · v∗nun, where u0, v1,

. . . , vn, un are words.
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Automata for regular slender languages

Theorem

A regular language is slender iff its minimal

deterministic trim automaton does not contain any

pair of connected simple cycles.

u

x y

Two connected cycles, where x, y ∈ A+ and u ∈ A∗.



LIAFA, CNRS et Université Paris Diderot

Automata for regular sparse languages

Theorem

A regular language is sparse iff its minimal

deterministic trim automaton does not contain any

pattern of the form

yx

where x and y are nonempty words such that

i(x) 6= i(y).
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Equations for slender languages

The full language is A∗. Regular slender or full
languages form a lattice of languages closed under
quotients. Denote by i(u) the first letter (or initial
letter) of u.

Theorem

Suppose that |A| > 2. A regular language of A∗ is

slender or full iff it satisfies the equations x 6 0 for

all x ∈ A∗ and the equation xωuyω = 0 for each

x, y ∈ A+, u ∈ A∗ such that i(uy) 6= i(x).
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Equations for regular sparse languages

Theorem

Suppose that |A| > 2. A regular language of A∗ is

sparse or full iff it satisfies the equations x 6 0 for

all x ∈ A∗ and the equations (xωyω)ω = 0 for each

x, y ∈ A+ such that i(x) 6= i(y).
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Boolean closures

Theorem

Suppose that |A| > 2. A regular language of A∗ is

slender or coslender iff its syntactic monoid has a

zero and satisfies the equations xωuyω = 0 for each

x, y ∈ A+, u ∈ A∗ such that i(uy) 6= i(x).

Theorem

Suppose that |A| > 2. A regular language of A∗ is

sparse or cosparse iff its syntactic monoid has a zero

and satisfies the equations (xωyω)ω = 0 for each

x, y ∈ A+ such that i(x) 6= i(y).
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Closure under inverses of morphisms

A class of languages K associates to each alphabet
A a lattice K(A∗) of languages of A∗.

K is closed under inverses of morphisms if for every
morphism ϕ : A∗ → B∗, L ∈ K(B∗) implies
ϕ−1(L) ∈ K(A∗).

A class of profinite equations E associates to each

alphabet A a set E(A) of profinite equations on Â∗.
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Closure under inverses of morphisms (2)

A class E of profinite equations is closed under
morphism if, for each morphism ϕ : A∗ → B∗,
u → v ∈ E(A) implies ϕ(u) → ϕ(v) ∈ E(B). Such
equations are called identities.

Theorem

A class of regular languages is defined by a set of

profinite identities iff it is closed under inverses of

morphisms.
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Examples

FO[<] (star-free languages) is defined by the
identity xω+1 = xω.

Σ1[<] is defined by the identity x 6 1.

BΣ1[<] (piecewise testable languages) is defined by
the identities xω+1 = xω and (xy)ω = (yx)ω.

FO
2[<] is defined by the identities xω+1 = xω and

(xy)ω(yx)ω(xy)ω = (xy)ω.
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C-morphisms

Let C be a class of morphisms closed under
composition containing the length preserving
morphisms.

Examples of such classes C:

• All morphisms

• Length preserving (ϕ(A) ⊆ B)

• Length increasing (ϕ(A) ⊆ B+)

• Length decreasing (ϕ(A) ⊆ B ∪ {1})

• Uniform (ϕ(A) ⊆ Bk)
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Closure under inverses of C-morphisms

A class of languages K is closed under inverses of
C-morphisms if, for each C-morphism ϕ : A∗ → B∗,
the condition L ∈ K(B∗) implies ϕ−1(L) ∈ K(A∗).

A class E of profinite equations is closed under
C-morphism if, for each C-morphism ϕ : A∗ → B∗,
u → v ∈ E(A) implies ϕ(u) → ϕ(v) ∈ E(B). Such
equations are called C-identities.
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Closure under inverses of C-morphisms (2)

Theorem

A class of regular languages is defined by a set of

profinite C-identities iff it is closed under inverses of

C-morphisms.

FO[< + MOD] = AC0 ∩ Reg is defined by the
uniform identity (xω−1y)ω = (xω−1y)ω+1 [BCST 92
+ Kunc 03]

Σ1[< + MOD] is defined by the uniform identities
xω−1y 6 1 and yxω−1 6 1. [CPS 06]
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Interpretation of equations (Notation: P = η(L))

Closed under Interpretation

∪,∩ u → v η̂(u) ∈ P ⇒ η̂(v) ∈ P

quotient u 6 v xvy → xuy

complement u ↔ v u → v and v → u

quotient and Lc u = v xuy ↔ xvy

ϕ−1 Identity Variables = words

ϕ−1 len. pres. lp-Identity Variables = letters

ϕ−1 uniform uni-Identity Variables = words

of the same length
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Polynomial closure

The polynomial closure Pol(L) of a lattice of
languages L of A∗ is the set of languages that are
finite unions of marked products of the form
L0a1L1 · · · anLn, where the ai are letters and the Li

are in L.

Theorem (Branco-Pin 09)

If L is a closed under quotients, then Pol(L) is

defined by the equations of the form xωyxω 6 xω,

where x, y are profinite words such that the

equations x = x2 and y 6 x are satisfied by L.
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Polynomial closure

The content of a word is the set of all letters
occurring in this word.

Theorem (Arfi 87, Pin-Weil 97)

Σ2[<] is defined by the identities xωyxω 6 xω,

where x, y are words with the same content.
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Logic

Every lattice of regular languages admits an
equational description (by profinite equations).

In particular, every class of regular languages
defined by a fragment of logic which is closed under
conjunctions and disjunctions (first order, monadic
second order, temporal logic, etc.) admits an
equational description.
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Equations for Σ1[+1]

xωyxω = xωyxωyxω

xωyxωzxω = xωzxωyxω

xωyxω
6 xω

xωuyωvxω ↔ yωvxωuyω

y(xy)ω ↔ (xy)ω ↔ (xy)ωx
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Back to the virtuous circles

Fragments

of logic

Lattice of

languages

Profinite

equations

Decidability

Hopefully
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Difficulties

We proved that any lattice of languages admits an
equational description. However. . .

• This result does not provide any algorithm to
find a set of equations defining a given class.

• Profinite words can be difficult to handle, or
even to define.

• Even if you are given a recursively enumerable
set of profinite equations, it remains to find an
algorithm for testing whether a given regular
language satisfies these equations.
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Extensions

This result extends to infinite words (by using Wilke
algebras) and very likely to words over ordinals or
linear orders by using the work of Bedon, Bruỳre,
Carton, Colcombet, Rispal, etc.

It should extend also to tree languages and to other
structures.

There is also an equational theory for any lattice of
(non regular!) languages. The price to pay is to use
procompact equations.
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