
Basics about algebraic approach to languages

Marc Zeitoun

LSV, ENS Cachan – LaBRI, U. Bordeaux – CNRS – INRIA

GAMES-EPIT Spring School 2011

Carcans Maubuisson
May 23–27, 2011

1/49

Motivation
I Word languages are used in computer science for many purposes.
I Natural models for

I (text) programs,
I inputs of programs,
I behaviors of programs,
I etc.

I Several formalisms to define regular sets of words: logics, regexp, automata. . .
How to compare their expressive power?

The talk shows examples exploiting connections with algebra to answer this
question.

Algebraic
Tools

Other
high level

Automata

Logics

2/49

Motivation: some examples

I Main question in this talk: expressiveness.
Typical questions:

I Compare the expressive power of logic L1 and logic L2.
I Is temporal logic with past and future operators more expressive than pure

future temporal logic?

I Is temporal logic with only unary operators weaker?
I Are FO(<) and LTL on words equally expressive?
I Is a given regular language L expressible in first-order logic?
I A polynomial is a language of the form

⋃
finite B

∗
0 a1B

∗
1 · · · akB∗k .

Given a regular language L, is it decidable if
I L is a polynomial?
I L is a finite boolean combination of polynomials?

3/49

Motivation: some examples

I Main question in this talk: expressiveness.
Typical questions:

I Compare the expressive power of logic L1 and logic L2.
I Is temporal logic with past and future operators more expressive than pure

future temporal logic?
I Is temporal logic with only unary operators weaker?
I Are FO(<) and LTL on words equally expressive?
I Is a given regular language L expressible in first-order logic?
I A polynomial is a language of the form

⋃
finite B

∗
0 a1B

∗
1 · · · akB∗k .

Given a regular language L, is it decidable if
I L is a polynomial?
I L is a finite boolean combination of polynomials?

3/49

Link between logic and algebra for regular languages

I A language L ⊆ A∗ is recognized by a monoid M if there is a morphism
ϕ : A∗ → M such that

L = ϕ−1(ϕ(L))

I In other words: it is enough to look at ϕ image to decide membership to L.

Thm. Kleene-Büchi
For a language L ⊆ A∗, it is equivalent

I to be recognized by a finite automaton,
I to be definable by a regular expression,
I to be definable in Monadic Second Order logic,
I to be recognized by a finite monoid.

4/49

Regular languages and monoids

Language L, Regular exp

Minimal automaton Amin(L)

ab∗
High-level
description

0 1 2
a a

b

b a, b

Low-level
description

“Easy” Harder

5/49

Regular languages and monoids

Language L, Regular exp

Minimal automaton Amin(L)

ab∗
High-level
description

0 1 2
a a

b

b a, b

Low-level
description

“Easy” Harder
Syntactic monoid M(L)

(finite, [K56])
Algebra

 algorithms

0 1 2

a 1 2 2

b 2 1 2

{ε, a, b, a2}
ab = a, ba = a2,
b2 = b

5/49

High-level vs. algebraic properties: prominent results

Language L Amin(L) Synt(L)
Logical

definability

Star-free Counter-free A FO(<), LTL
[Sch65,McN-P71,K68]

Piecewise testable Very weak + . . . J Bool(Σ1)

[S75,Th87]

⊎
f
∏

non ambiguous 2-way part. ord. DA FO2(<),
UTL,Σ2 ∩ Π2

[Sch76,SchThV01,ThW98,EVW97,PW97]

Loc. threshold testable Forbidden patterns ACom ∗ LI FO(+1)

[S85,ThW85,BP89]

6/49

Some tools

I Syntactic monoid of a regular language.
I Monoid structure, in terms of ideals.
I Basic and more advanced pumping arguments.

7/49

Outline

Motivation

Regular languages and monoids
Syntactic monoids

Background on finite monoids
Idempotents
Green’s relations

Logics
First order logic
LTL

Expressiveness results
FO with one variable
Piecewise testable languages
First-order logic, star-free languages and aperiodic monoids

Summary

8/49

Syntactic monoids

I Notation: Monoid (M, ·, 1), with · associative, 1 neutral.
I A∗ free monoid over A.
I Morphism ϕ : M → N.
I If L ⊆ A∗, its syntactic congruence ∼L ⊆ A∗ × A∗ is defined by

u ∼L v iff ∀x , y ∈ xuy ∈ L⇐⇒ xvy ∈ L.

I It is indeed a congruence: equivalence relation compatible with concatenation.

u ∼L v =⇒ [x(uw)y ∈ L⇔ x(vw)y ∈ L] =⇒ uw ∼L vw

I Syntactic monoid M(L) = A∗/∼L and syntactic morphism ηL : A∗ → M(L).

Thm. (Myhill)
A language is regular if and only if its syntactic congruence has finite index.

9/49

Syntactic monoids
I Say that M1 divides M2 if M1 is a quotient of a submonoid of M2.

Syntactic monoid and recognition
Monoids recognizing L are exactly those which are divided by M(L).

Proof
I ηL recognizes L since η−1L (ηL(L)) = L:

u ∈ η−1L (ηL(L)) ⇒ ηL(u) ∈ ηL(L) ⇒ ∃v ∈ L, u ∼L v ⇒ u ∈ L.

I If M(L) divides M:

A∗ M(L)

N M

β surj.

α one-to-one

ηL

ϕ

Then α ◦ ϕ recognizes L.
I Conversely, if ϕ : A∗ → M recognizes L, then ϕ(u) = ϕ(v) implies u ∼L v .

Therefore there is a surjective morphism β from ϕ(A∗) into M(L).

10/49

Syntactic monoids
I Say that M1 divides M2 if M1 is a quotient of a submonoid of M2.

Syntactic monoid and recognition
Monoids recognizing L are exactly those which are divided by M(L).

Proof
I ηL recognizes L since η−1L (ηL(L)) = L:

u ∈ η−1L (ηL(L)) ⇒ ηL(u) ∈ ηL(L) ⇒ ∃v ∈ L, u ∼L v ⇒ u ∈ L.

I If M(L) divides M:

A∗ M(L)

N M

β surj.

α one-to-one

ηL

ϕ

Then α ◦ ϕ recognizes L.
I Conversely, if ϕ : A∗ → M recognizes L, then ϕ(u) = ϕ(v) implies u ∼L v .

Therefore there is a surjective morphism β from ϕ(A∗) into M(L).

10/49

Syntactic monoids
I Say that M1 divides M2 if M1 is a quotient of a submonoid of M2.

Syntactic monoid and recognition
Monoids recognizing L are exactly those which are divided by M(L).

Proof
I ηL recognizes L since η−1L (ηL(L)) = L:

u ∈ η−1L (ηL(L)) ⇒ ηL(u) ∈ ηL(L) ⇒ ∃v ∈ L, u ∼L v ⇒ u ∈ L.

I If M(L) divides M:

A∗ M(L)

N M

β surj.

α one-to-one

ηL

ϕ

Then α ◦ ϕ recognizes L.

I Conversely, if ϕ : A∗ → M recognizes L, then ϕ(u) = ϕ(v) implies u ∼L v .
Therefore there is a surjective morphism β from ϕ(A∗) into M(L).

10/49

Syntactic monoids
I Say that M1 divides M2 if M1 is a quotient of a submonoid of M2.

Syntactic monoid and recognition
Monoids recognizing L are exactly those which are divided by M(L).

Proof
I ηL recognizes L since η−1L (ηL(L)) = L:

u ∈ η−1L (ηL(L)) ⇒ ηL(u) ∈ ηL(L) ⇒ ∃v ∈ L, u ∼L v ⇒ u ∈ L.

I If M(L) divides M:

A∗ M(L)

N M

β surj.

α one-to-one

ηL

ϕ

Then α ◦ ϕ recognizes L.
I Conversely, if ϕ : A∗ → M recognizes L, then ϕ(u) = ϕ(v) implies u ∼L v .

Therefore there is a surjective morphism β from ϕ(A∗) into M(L).
10/49

Syntactic monoids

I M(L) is the monoid of transitions of the minimal automaton of L.
Each word induces a mapping Q → Q (hence |M(L)| 6 QQ).
⇒ Algorithm to compute M(L) (see Example next slide).

I In particular, we have M(A∗ \ L) = M(L)

I M(L1 ∩ L2) and M(L1 ∪ L2) divide M(L1)×M(L2).
I Consequence: properties defined by identities are preserved through boolean

combinations.
I For instance, if M(L1) and M(L2) are commutative, then so are

I M(L1 ∩ L2),
I M(L1 ∪ L2)
I M(L1 \ L2).

11/49

Syntactic monoids

I M(L) is the monoid of transitions of the minimal automaton of L.
Each word induces a mapping Q → Q (hence |M(L)| 6 QQ).
⇒ Algorithm to compute M(L) (see Example next slide).

I In particular, we have M(A∗ \ L) = M(L)

I M(L1 ∩ L2) and M(L1 ∪ L2) divide M(L1)×M(L2).
I Consequence: properties defined by identities are preserved through boolean

combinations.
I For instance, if M(L1) and M(L2) are commutative, then so are

I M(L1 ∩ L2),
I M(L1 ∪ L2)
I M(L1 \ L2).

11/49

Syntactic monoid: example
I Example: let A = {a, b, c} and L = A∗abA∗.
I The minimal automaton of L is the following:

1 2 3

b, c a a, b, c

a

c

b

Generators
1 2 3

a 2 2 3
b 1 3 3
c 1 1 3

Relations
aa = a = ca, ac = cb = cc = c
bb = b = bc, ab = bab = 0

Elements
1 2 3

∗ 1 1 2 3
∗ a 2 2 3
∗ b 1 3 3
∗ c 1 1 3
∗ ab 3 3 3
ba 2 3 3

12/49

Background on finite
monoids

13/49

Idempotents in monoids

I An idempotent is an element e ∈ M such that e = ee.
I Any m ∈ M has a single power which is idempotent, denoted mω.

. . .
m m2 m3 mk−1

mk

mk+1

mω = (mω)2

I Since the loop has at most |M| elements, m|M|! = mω.

14/49

Ideal theory of monoids: Green’s relations

I Automata exhibit some structure: graph representation, strongly connected
components, DAG of scc, etc.

I One can extract such kind of information also out of a monoid M.

I The right action of M on itself yields a labeled graph R(M).

m1 m1m2

m2

Strongly connected components of R(M) are called R-classes.
I Formally, u and v are R-equivalent, written u R v if

1. There exists x ∈ M such that v = ux , and
2. There exists y ∈ M such that u = vy .

I Or equivalently, if uM = vM: u and v generate the same right ideal.

15/49

Ideal theory of monoids: Green’s relations

I Automata exhibit some structure: graph representation, strongly connected
components, DAG of scc, etc.

I One can extract such kind of information also out of a monoid M.
I The right action of M on itself yields a labeled graph R(M).

m1 m1m2

m2

Strongly connected components of R(M) are called R-classes.
I Formally, u and v are R-equivalent, written u R v if

1. There exists x ∈ M such that v = ux , and
2. There exists y ∈ M such that u = vy .

I Or equivalently, if uM = vM: u and v generate the same right ideal.

15/49

Green’s relations
I u R v if uM = vM,
I u L v if Mu = Mv ,
I u J v if MuM = MvM,
I H= R∩ L.

{a, b, c}∗ab{a, b, c}∗

1 2 3

b, c a a, b, c

a

c

b

I (ca = a) ∧ (ac = c)⇒ a R c .
I (ba = ba) ∧ (cba = a)⇒ a L ba.
I Hence b L c R a, so b J a.

I Here, every H-class is trivial.

I In this example, we see that R and L commute, and J = R ◦ L = L ◦ R.

16/49

Green’s relations
I u R v if uM = vM,
I u L v if Mu = Mv ,
I u J v if MuM = MvM,
I H= R∩ L.

{a, b, c}∗ab{a, b, c}∗

1 2 3

b, c a a, b, c

a

c

b

I (ca = a) ∧ (ac = c)⇒ a R c .
I (ba = ba) ∧ (cba = a)⇒ a L ba.
I Hence b L c R a, so b J a.

I Here, every H-class is trivial.

I In this example, we see that R and L commute, and J = R ◦ L = L ◦ R.

16/49

Green’s relations
I u R v if uM = vM,
I u L v if Mu = Mv ,
I u J v if MuM = MvM,
I H= R∩ L.

{a, b, c}∗ab{a, b, c}∗

1 2 3

b, c a a, b, c

a

c

b

∗ 1

∗ a ∗ c

ba ∗ b

∗ ab

I (ca = a) ∧ (ac = c)⇒ a R c .

I (ba = ba) ∧ (cba = a)⇒ a L ba.

I Hence b L c R a, so b J a.

I Here, every H-class is trivial.

I In this example, we see that R and L commute, and J = R ◦ L = L ◦ R.

16/49

Green’s relations
I u R v if uM = vM,
I u L v if Mu = Mv ,
I u J v if MuM = MvM,
I H= R∩ L.

{a, b, c}∗ab{a, b, c}∗

1 2 3

b, c a a, b, c

a

c

b

∗ 1

∗ a ∗ c

ba ∗ b

∗ ab

I (ca = a) ∧ (ac = c)⇒ a R c .

I (ba = ba) ∧ (cba = a)⇒ a L ba.

I Hence b L c R a, so b J a.

I Here, every H-class is trivial.

I In this example, we see that R and L commute, and J = R ◦ L = L ◦ R.

16/49

Green’s relations
I u R v if uM = vM,
I u L v if Mu = Mv ,
I u J v if MuM = MvM,
I H= R∩ L.

{a, b, c}∗ab{a, b, c}∗

1 2 3

b, c a a, b, c

a

c

b

∗ 1

∗ a ∗ c

ba ∗ b

∗ ab

I (ca = a) ∧ (ac = c)⇒ a R c .

I (ba = ba) ∧ (cba = a)⇒ a L ba.

I Hence b L c R a, so b J a.

I Here, every H-class is trivial.

I In this example, we see that R and L commute, and J = R ◦ L = L ◦ R.

16/49

Green’s relations
I u R v if uM = vM,
I u L v if Mu = Mv ,
I u J v if MuM = MvM,
I H= R∩ L.

{a, b, c}∗ab{a, b, c}∗

1 2 3

b, c a a, b, c

a

c

b

∗ 1

∗ a ∗ c

ba ∗ b

∗ ab

I (ca = a) ∧ (ac = c)⇒ a R c .

I (ba = ba) ∧ (cba = a)⇒ a L ba.

I Hence b L c R a, so b J a.

I Here, every H-class is trivial.

I In this example, we see that R and L commute, and J = R ◦ L = L ◦ R.

16/49

Green’s relations
I u R v if uM = vM,
I u L v if Mu = Mv ,
I u J v if MuM = MvM,
I H= R∩ L.

{a, b, c}∗ab{a, b, c}∗

1 2 3

b, c a a, b, c

a

c

b

∗ 1

∗ a ∗ c

ba ∗ b

∗ ab

I (ca = a) ∧ (ac = c)⇒ a R c .

I (ba = ba) ∧ (cba = a)⇒ a L ba.

I Hence b L c R a, so b J a.

I Here, every H-class is trivial.

I In this example, we see that R and L commute, and J = R ◦ L = L ◦ R.

16/49

Green’s relations
I u R v if uM = vM,
I u L v if Mu = Mv ,
I u J v if MuM = MvM,
I H= R∩ L.

{a, b, c}∗ab{a, b, c}∗

1 2 3

b, c a a, b, c

a

c

b

∗ 1

∗ a ∗ c

ba ∗ b

∗ ab

I (ca = a) ∧ (ac = c)⇒ a R c .

I (ba = ba) ∧ (cba = a)⇒ a L ba.

I Hence b L c R a, so b J a.

I Here, every H-class is trivial.

I In this example, we see that R and L commute, and J = R ◦ L = L ◦ R.

16/49

Another example
I u R v if uM = vM,
I u L v if Mu = Mv ,
I u J v if MuM = MvM,
I H= R∩ L.

1 2 3

b, c a a, c

a

c b

b

∗ 1 b

∗ a ab cb abcb ∗ c abc
∗ bab ba ∗ bcb babcb bc babc

∗ cbab ∗ cba ∗ cbc

I Here, nontrivial H-classes.
I An H-class containing an

idempotent ∗ is a group.
I H is a group, or HH ∩ H = ∅
I All H-classes from same J -class

are isomorphic.

17/49

Another example
I u R v if uM = vM,
I u L v if Mu = Mv ,
I u J v if MuM = MvM,
I H= R∩ L.

1 2 3

b, c a a, c

a

c b

b

∗ 1 b

∗ a ab cb abcb ∗ c abc
∗ bab ba ∗ bcb babcb bc babc

∗ cbab ∗ cba ∗ cbc

I Here, nontrivial H-classes.
I An H-class containing an

idempotent ∗ is a group.
I H is a group, or HH ∩ H = ∅
I All H-classes from same J -class

are isomorphic.

17/49

Basic but important properties
I H ⊆ R,L ⊆ J .
I R is a left congruence, L is a right congruence.

I One can also consider the associated preorders. For instance:
I s 6J t if MsM ⊆ MtM (we say that s, t are J -comparable).
I s <J t if s 6J t and s 6J t.

An important property
In a finite monoid, J = R ◦ L = L ◦ R.

Proof of J= R ◦ L
⊇ If u (R ◦ L) v , there is w st. u R w L v so u J w J v .
⊆ If u J v , then (u = xvt) ∧ (v = yuz). Let w = uz

u = (xy)u(zt) = (xy)ωu(zt)ω = u(zt)ω 6R uz 6R u.

Hence u R w and symmetrically w L v .

I With same arguments: J -equivalent and R-comparable implies R-equivalent.

18/49

Basic but important properties
I H ⊆ R,L ⊆ J .
I R is a left congruence, L is a right congruence.

I One can also consider the associated preorders. For instance:
I s 6J t if MsM ⊆ MtM (we say that s, t are J -comparable).
I s <J t if s 6J t and s 6J t.

An important property
In a finite monoid, J = R ◦ L = L ◦ R.

Proof of J= R ◦ L
⊇ If u (R ◦ L) v , there is w st. u R w L v so u J w J v .
⊆ If u J v , then (u = xvt) ∧ (v = yuz). Let w = uz

u = (xy)u(zt) = (xy)ωu(zt)ω = u(zt)ω 6R uz 6R u.

Hence u R w and symmetrically w L v .

I With same arguments: J -equivalent and R-comparable implies R-equivalent.

18/49

Basic but important properties
I H ⊆ R,L ⊆ J .
I R is a left congruence, L is a right congruence.

I One can also consider the associated preorders. For instance:
I s 6J t if MsM ⊆ MtM (we say that s, t are J -comparable).
I s <J t if s 6J t and s 6J t.

An important property
In a finite monoid, J = R ◦ L = L ◦ R.

Proof of J= R ◦ L
⊇ If u (R ◦ L) v , there is w st. u R w L v so u J w J v .
⊆ If u J v , then (u = xvt) ∧ (v = yuz). Let w = uz

u = (xy)u(zt) = (xy)ωu(zt)ω = u(zt)ω 6R uz 6R u.

Hence u R w and symmetrically w L v .

I With same arguments: J -equivalent and R-comparable implies R-equivalent.

18/49

Basic but important properties
I H ⊆ R,L ⊆ J .
I R is a left congruence, L is a right congruence.

I One can also consider the associated preorders. For instance:
I s 6J t if MsM ⊆ MtM (we say that s, t are J -comparable).
I s <J t if s 6J t and s 6J t.

An important property
In a finite monoid, J = R ◦ L = L ◦ R.

Proof of J= R ◦ L
⊇ If u (R ◦ L) v , there is w st. u R w L v so u J w J v .

⊆ If u J v , then (u = xvt) ∧ (v = yuz). Let w = uz

u = (xy)u(zt) = (xy)ωu(zt)ω = u(zt)ω 6R uz 6R u.

Hence u R w and symmetrically w L v .

I With same arguments: J -equivalent and R-comparable implies R-equivalent.

18/49

Basic but important properties
I H ⊆ R,L ⊆ J .
I R is a left congruence, L is a right congruence.

I One can also consider the associated preorders. For instance:
I s 6J t if MsM ⊆ MtM (we say that s, t are J -comparable).
I s <J t if s 6J t and s 6J t.

An important property
In a finite monoid, J = R ◦ L = L ◦ R.

Proof of J= R ◦ L
⊇ If u (R ◦ L) v , there is w st. u R w L v so u J w J v .
⊆ If u J v , then (u = xvt) ∧ (v = yuz). Let w = uz

u = (xy)u(zt) = (xy)ωu(zt)ω = u(zt)ω 6R uz 6R u.

Hence u R w and symmetrically w L v .

I With same arguments: J -equivalent and R-comparable implies R-equivalent.

18/49

Basic but important properties
I H ⊆ R,L ⊆ J .
I R is a left congruence, L is a right congruence.

I One can also consider the associated preorders. For instance:
I s 6J t if MsM ⊆ MtM (we say that s, t are J -comparable).
I s <J t if s 6J t and s 6J t.

An important property
In a finite monoid, J = R ◦ L = L ◦ R.

Proof of J= R ◦ L
⊇ If u (R ◦ L) v , there is w st. u R w L v so u J w J v .
⊆ If u J v , then (u = xvt) ∧ (v = yuz). Let w = uz

u = (xy)u(zt) = (xy)ωu(zt)ω = u(zt)ω 6R uz 6R u.

Hence u R w and symmetrically w L v .

I With same arguments: J -equivalent and R-comparable implies R-equivalent.
18/49

Logics

19/49

First Order Logic FO(<)

Syntax: FOA(<)

ϕ ::= ⊥ | a(x) | ¬ϕ | ϕ ∨ ϕ | x 6 y | ∃xϕ (a ∈ A, x , y ∈ Var)

Semantics
I A formula is evaluated on a word w ∈ A∗.
I σ : Var→ pos(w) = {1, 2, . . . , |w |} is a interpretation of (free) variables.
I < interpreted as the usual ordering between positions.

t, σ |= a(x) if wσ(x) = a
t, σ |= ¬ϕ if t, σ 6|= ϕ

t, σ |= ϕ ∨ ψ if t, σ |= ϕ ∨ t, σ |= ψ

t, σ |= x 6 y if σ(x) 6 σ(y)

t, σ |= ∃xϕ if ∃v ∈ V : t, {σ ∪ [x 7→ v]} |= ϕ

Macros
∀xϕ : ¬∃x¬ϕ ϕ ∧ ψ : ¬(¬ϕ ∨ ¬ψ) ϕ⇒ ψ : ψ ∨ ¬ϕ ϕ⇔ ψ . . .

A sentence ϕ ∈ FO(<) defines the language L(ϕ) = {w | w |= ϕ} ⊆ A∗.

20/49

First Order Logic FO(<)

Syntax: FOA(<)

ϕ ::= ⊥ | a(x) | ¬ϕ | ϕ ∨ ϕ | x 6 y | ∃xϕ (a ∈ A, x , y ∈ Var)

Semantics
I A formula is evaluated on a word w ∈ A∗.
I σ : Var→ pos(w) = {1, 2, . . . , |w |} is a interpretation of (free) variables.
I < interpreted as the usual ordering between positions.

t, σ |= a(x) if wσ(x) = a

t, σ |= ¬ϕ if t, σ 6|= ϕ

t, σ |= ϕ ∨ ψ if t, σ |= ϕ ∨ t, σ |= ψ

t, σ |= x 6 y if σ(x) 6 σ(y)

t, σ |= ∃xϕ if ∃v ∈ V : t, {σ ∪ [x 7→ v]} |= ϕ

Macros
∀xϕ : ¬∃x¬ϕ ϕ ∧ ψ : ¬(¬ϕ ∨ ¬ψ) ϕ⇒ ψ : ψ ∨ ¬ϕ ϕ⇔ ψ . . .

A sentence ϕ ∈ FO(<) defines the language L(ϕ) = {w | w |= ϕ} ⊆ A∗.

20/49

First Order Logic FO(<)

Syntax: FOA(<)

ϕ ::= ⊥ | a(x) | ¬ϕ | ϕ ∨ ϕ | x 6 y | ∃xϕ (a ∈ A, x , y ∈ Var)

Semantics
I A formula is evaluated on a word w ∈ A∗.
I σ : Var→ pos(w) = {1, 2, . . . , |w |} is a interpretation of (free) variables.
I < interpreted as the usual ordering between positions.

t, σ |= a(x) if wσ(x) = a
t, σ |= ¬ϕ if t, σ 6|= ϕ

t, σ |= ϕ ∨ ψ if t, σ |= ϕ ∨ t, σ |= ψ

t, σ |= x 6 y if σ(x) 6 σ(y)

t, σ |= ∃xϕ if ∃v ∈ V : t, {σ ∪ [x 7→ v]} |= ϕ

Macros
∀xϕ : ¬∃x¬ϕ ϕ ∧ ψ : ¬(¬ϕ ∨ ¬ψ) ϕ⇒ ψ : ψ ∨ ¬ϕ ϕ⇔ ψ . . .

A sentence ϕ ∈ FO(<) defines the language L(ϕ) = {w | w |= ϕ} ⊆ A∗.

20/49

First Order Logic FO(<)

Syntax: FOA(<)

ϕ ::= ⊥ | a(x) | ¬ϕ | ϕ ∨ ϕ | x 6 y | ∃xϕ (a ∈ A, x , y ∈ Var)

Semantics
I A formula is evaluated on a word w ∈ A∗.
I σ : Var→ pos(w) = {1, 2, . . . , |w |} is a interpretation of (free) variables.
I < interpreted as the usual ordering between positions.

t, σ |= a(x) if wσ(x) = a
t, σ |= ¬ϕ if t, σ 6|= ϕ

t, σ |= ϕ ∨ ψ if t, σ |= ϕ ∨ t, σ |= ψ

t, σ |= x 6 y if σ(x) 6 σ(y)

t, σ |= ∃xϕ if ∃v ∈ V : t, {σ ∪ [x 7→ v]} |= ϕ

Macros
∀xϕ : ¬∃x¬ϕ ϕ ∧ ψ : ¬(¬ϕ ∨ ¬ψ) ϕ⇒ ψ : ψ ∨ ¬ϕ ϕ⇔ ψ . . .

A sentence ϕ ∈ FO(<) defines the language L(ϕ) = {w | w |= ϕ} ⊆ A∗.

20/49

First Order Logic FO(<)

Syntax: FOA(<)

ϕ ::= ⊥ | a(x) | ¬ϕ | ϕ ∨ ϕ | x 6 y | ∃xϕ (a ∈ A, x , y ∈ Var)

Semantics
I A formula is evaluated on a word w ∈ A∗.
I σ : Var→ pos(w) = {1, 2, . . . , |w |} is a interpretation of (free) variables.
I < interpreted as the usual ordering between positions.

t, σ |= a(x) if wσ(x) = a
t, σ |= ¬ϕ if t, σ 6|= ϕ

t, σ |= ϕ ∨ ψ if t, σ |= ϕ ∨ t, σ |= ψ

t, σ |= x 6 y if σ(x) 6 σ(y)

t, σ |= ∃xϕ if ∃v ∈ V : t, {σ ∪ [x 7→ v]} |= ϕ

Macros
∀xϕ : ¬∃x¬ϕ ϕ ∧ ψ : ¬(¬ϕ ∨ ¬ψ) ϕ⇒ ψ : ψ ∨ ¬ϕ ϕ⇔ ψ . . .

A sentence ϕ ∈ FO(<) defines the language L(ϕ) = {w | w |= ϕ} ⊆ A∗.

20/49

First Order Logic FO(<)

Syntax: FOA(<)

ϕ ::= ⊥ | a(x) | ¬ϕ | ϕ ∨ ϕ | x 6 y | ∃xϕ (a ∈ A, x , y ∈ Var)

Semantics
I A formula is evaluated on a word w ∈ A∗.
I σ : Var→ pos(w) = {1, 2, . . . , |w |} is a interpretation of (free) variables.
I < interpreted as the usual ordering between positions.

t, σ |= a(x) if wσ(x) = a
t, σ |= ¬ϕ if t, σ 6|= ϕ

t, σ |= ϕ ∨ ψ if t, σ |= ϕ ∨ t, σ |= ψ

t, σ |= x 6 y if σ(x) 6 σ(y)

t, σ |= ∃xϕ if ∃v ∈ V : t, {σ ∪ [x 7→ v]} |= ϕ

Macros
∀xϕ : ¬∃x¬ϕ ϕ ∧ ψ : ¬(¬ϕ ∨ ¬ψ) ϕ⇒ ψ : ψ ∨ ¬ϕ ϕ⇔ ψ . . .

A sentence ϕ ∈ FO(<) defines the language L(ϕ) = {w | w |= ϕ} ⊆ A∗.

20/49

First Order Logic FO(<)

Syntax: FOA(<)

ϕ ::= ⊥ | a(x) | ¬ϕ | ϕ ∨ ϕ | x 6 y | ∃xϕ (a ∈ A, x , y ∈ Var)

Semantics
I A formula is evaluated on a word w ∈ A∗.
I σ : Var→ pos(w) = {1, 2, . . . , |w |} is a interpretation of (free) variables.
I < interpreted as the usual ordering between positions.

t, σ |= a(x) if wσ(x) = a
t, σ |= ¬ϕ if t, σ 6|= ϕ

t, σ |= ϕ ∨ ψ if t, σ |= ϕ ∨ t, σ |= ψ

t, σ |= x 6 y if σ(x) 6 σ(y)

t, σ |= ∃xϕ if ∃v ∈ V : t, {σ ∪ [x 7→ v]} |= ϕ

Macros
∀xϕ : ¬∃x¬ϕ ϕ ∧ ψ : ¬(¬ϕ ∨ ¬ψ) ϕ⇒ ψ : ψ ∨ ¬ϕ ϕ⇔ ψ . . .

A sentence ϕ ∈ FO(<) defines the language L(ϕ) = {w | w |= ϕ} ⊆ A∗.
20/49

First Order Logic — Examples

Examples of FO(<) formulas
I ϕ = ∀x(a(x) ∨ b(x)) ∧ ∀y∀z (z = y + 1)⇒ [a(y)⇔ b(z)]

bababababa |= ϕ

abaabaabaaba 6|= ϕ

I y = x + 1 def
= (x < y) ∧ (¬∃z , x < z < y).

Conversely, < is not expressible in FO(+1) [Th82]. How to prove it?
I first(x)

def
= ¬∃z , z < x .

I (min ⊆ B)
def
=
∨

b∈B ∃x [b(x) ∧ first(x)].
I L(ϕ ∧ first = {a} ∧ last = {b}) = (ab)+.
I Hence, (ab)+ is expressible in FO(<). How to automatically get a formula?
I The language (aa)+ cannot be expressed in FO(<)! How to prove it?

21/49

First Order Logic — Examples

Examples of FO(<) formulas
I ϕ = ∀x(a(x) ∨ b(x)) ∧ ∀y∀z (z = y + 1)⇒ [a(y)⇔ b(z)]

bababababa |= ϕ

abaabaabaaba 6|= ϕ

I y = x + 1 def
= (x < y) ∧ (¬∃z , x < z < y).

Conversely, < is not expressible in FO(+1) [Th82]. How to prove it?
I first(x)

def
= ¬∃z , z < x .

I (min ⊆ B)
def
=
∨

b∈B ∃x [b(x) ∧ first(x)].

I L(ϕ ∧ first = {a} ∧ last = {b}) = (ab)+.
I Hence, (ab)+ is expressible in FO(<). How to automatically get a formula?
I The language (aa)+ cannot be expressed in FO(<)! How to prove it?

21/49

First Order Logic — Examples

Examples of FO(<) formulas
I ϕ = ∀x(a(x) ∨ b(x)) ∧ ∀y∀z (z = y + 1)⇒ [a(y)⇔ b(z)]

bababababa |= ϕ

abaabaabaaba 6|= ϕ

I y = x + 1 def
= (x < y) ∧ (¬∃z , x < z < y).

Conversely, < is not expressible in FO(+1) [Th82]. How to prove it?
I first(x)

def
= ¬∃z , z < x .

I (min ⊆ B)
def
=
∨

b∈B ∃x [b(x) ∧ first(x)].
I L(ϕ ∧ first = {a} ∧ last = {b}) = (ab)+.
I Hence, (ab)+ is expressible in FO(<). How to automatically get a formula?
I The language (aa)+ cannot be expressed in FO(<)! How to prove it?

21/49

Linear Temporal Logic LTL (Pnueli 1977)

Syntax: LTL(A,X,U)

ϕ ::= ⊥ | a | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ

Semantics: w ∈ A∗ and i ∈ pos(w)

w , i |= a if wi = a
w , i |= ¬ϕ if w , i 6|= ϕ

w , i |= ϕ ∨ ψ if w , i |= ϕ ∨ w , i |= ψ

w , i |= Xϕ if w , i + 1 |= ϕ

w , i |= ϕ U ψ if ∃k. i 6 k ∧ w , k |= ψ ∧ ∀j . (i 6 j < k)⇒ w , j |= ϕ

Example

ϕ ∈ LTL(A,X,U) defines the language L(ϕ) = {w | w , 1 |= ϕ}.

22/49

Linear Temporal Logic LTL (Pnueli 1977)

Syntax: LTL(A,X,U)

ϕ ::= ⊥ | a | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ

Semantics: w ∈ A∗ and i ∈ pos(w)

w , i |= a if wi = a

w , i |= ¬ϕ if w , i 6|= ϕ

w , i |= ϕ ∨ ψ if w , i |= ϕ ∨ w , i |= ψ

w , i |= Xϕ if w , i + 1 |= ϕ

w , i |= ϕ U ψ if ∃k. i 6 k ∧ w , k |= ψ ∧ ∀j . (i 6 j < k)⇒ w , j |= ϕ

Example

a b a a c b a d b

· · ·

ϕ ∈ LTL(A,X,U) defines the language L(ϕ) = {w | w , 1 |= ϕ}.

22/49

Linear Temporal Logic LTL (Pnueli 1977)

Syntax: LTL(A,X,U)

ϕ ::= ⊥ | a | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ

Semantics: w ∈ A∗ and i ∈ pos(w)

w , i |= a if wi = a
w , i |= ¬ϕ if w , i 6|= ϕ

w , i |= ϕ ∨ ψ if w , i |= ϕ ∨ w , i |= ψ

w , i |= Xϕ if w , i + 1 |= ϕ

w , i |= ϕ U ψ if ∃k. i 6 k ∧ w , k |= ψ ∧ ∀j . (i 6 j < k)⇒ w , j |= ϕ

Example

a b a a c b a d b

· · ·

ϕ ∈ LTL(A,X,U) defines the language L(ϕ) = {w | w , 1 |= ϕ}.

22/49

Linear Temporal Logic LTL (Pnueli 1977)

Syntax: LTL(A,X,U)

ϕ ::= ⊥ | a | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ

Semantics: w ∈ A∗ and i ∈ pos(w)

w , i |= a if wi = a
w , i |= ¬ϕ if w , i 6|= ϕ

w , i |= ϕ ∨ ψ if w , i |= ϕ ∨ w , i |= ψ

w , i |= Xϕ if w , i + 1 |= ϕ

w , i |= ϕ U ψ if ∃k. i 6 k ∧ w , k |= ψ ∧ ∀j . (i 6 j < k)⇒ w , j |= ϕ

Example
Xϕ

ϕ
· · ·

ϕ ∈ LTL(A,X,U) defines the language L(ϕ) = {w | w , 1 |= ϕ}.

22/49

Linear Temporal Logic LTL (Pnueli 1977)

Syntax: LTL(A,X,U)

ϕ ::= ⊥ | a | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ

Semantics: w ∈ A∗ and i ∈ pos(w)

w , i |= a if wi = a
w , i |= ¬ϕ if w , i 6|= ϕ

w , i |= ϕ ∨ ψ if w , i |= ϕ ∨ w , i |= ψ

w , i |= Xϕ if w , i + 1 |= ϕ

w , i |= ϕ U ψ if ∃k. i 6 k ∧ w , k |= ψ ∧ ∀j . (i 6 j < k)⇒ w , j |= ϕ

Example
ϕ U ψ

ϕ ϕ
· · ·

ϕ ψ
· · ·

ϕ ∈ LTL(A,X,U) defines the language L(ϕ) = {w | w , 1 |= ϕ}.

22/49

Linear Temporal Logic LTL (Pnueli 1977)

Syntax: LTL(A,X,U)

ϕ ::= ⊥ | a | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ

Semantics: w ∈ A∗ and i ∈ pos(w)

w , i |= a if wi = a
w , i |= ¬ϕ if w , i 6|= ϕ

w , i |= ϕ ∨ ψ if w , i |= ϕ ∨ w , i |= ψ

w , i |= Xϕ if w , i + 1 |= ϕ

w , i |= ϕ U ψ if ∃k. i 6 k ∧ w , k |= ψ ∧ ∀j . (i 6 j < k)⇒ w , j |= ϕ

Example
ϕ U ψ

ϕ ϕ
· · ·

ϕ ψ
· · ·

ϕ ∈ LTL(A,X,U) defines the language L(ϕ) = {w | w , 1 |= ϕ}.

22/49

Useful LTL Macros

Macros
I Fϕ = > U ϕ (eventually).
I Gϕ = ¬F¬ϕ (always in the future).

Example
Fϕ

· · ·
ϕ

· · ·

Gϕ

ϕ ϕ
· · ·

ϕ ϕ ϕ
· · ·

23/49

Examples of LTL properties

Some languages definable in LTL
I F a defines the language A∗aA∗.

I G a defines the language a+.

I (ab)+ is also definable: G(a ∨ b) ∧ a ∧ F(b ∧ ¬X>) ∧ G(a↔ ¬Xb)

I Can (aa)+ be defined in LTL? It does not seem so, but how to prove it?

I On A∗, LTL formulas can be easily translated in FO(<) formulas.

I Does the converse hold? Difficult because LTL only handles one free variable.

Syntactic monoids help!

24/49

Examples of LTL properties

Some languages definable in LTL
I F a defines the language A∗aA∗.

I G a defines the language a+.

I (ab)+ is also definable: G(a ∨ b) ∧ a ∧ F(b ∧ ¬X>) ∧ G(a↔ ¬Xb)

I Can (aa)+ be defined in LTL? It does not seem so, but how to prove it?

I On A∗, LTL formulas can be easily translated in FO(<) formulas.

I Does the converse hold? Difficult because LTL only handles one free variable.

Syntactic monoids help!

24/49

Examples of LTL properties

Some languages definable in LTL
I F a defines the language A∗aA∗.

I G a defines the language a+.

I (ab)+ is also definable: G(a ∨ b) ∧ a ∧ F(b ∧ ¬X>) ∧ G(a↔ ¬Xb)

I Can (aa)+ be defined in LTL? It does not seem so, but how to prove it?

I On A∗, LTL formulas can be easily translated in FO(<) formulas.

I Does the converse hold? Difficult because LTL only handles one free variable.

Syntactic monoids help!

24/49

Examples of LTL properties

Some languages definable in LTL
I F a defines the language A∗aA∗.

I G a defines the language a+.

I (ab)+ is also definable: G(a ∨ b) ∧ a ∧ F(b ∧ ¬X>) ∧ G(a↔ ¬Xb)

I Can (aa)+ be defined in LTL? It does not seem so, but how to prove it?

I On A∗, LTL formulas can be easily translated in FO(<) formulas.

I Does the converse hold? Difficult because LTL only handles one free variable.

Syntactic monoids help!

24/49

Examples of LTL properties

Some languages definable in LTL
I F a defines the language A∗aA∗.

I G a defines the language a+.

I (ab)+ is also definable: G(a ∨ b) ∧ a ∧ F(b ∧ ¬X>) ∧ G(a↔ ¬Xb)

I Can (aa)+ be defined in LTL? It does not seem so, but how to prove it?

I On A∗, LTL formulas can be easily translated in FO(<) formulas.

I Does the converse hold? Difficult because LTL only handles one free variable.

Syntactic monoids help!

24/49

Expressiveness results

25/49

FO with one variable

FO1(<) = where only one variable name is allowed.

Example: FO with one variable
The following conditions are equivalent:
1. L is definable by an FO1(<) sentence.
2. L is a boolean combination of languages of the form A∗aA∗.
3. The syntactic monoid of L is idempotent and commutative:

∀s, t ∈ M(L), s = s2 and st = ts.

26/49

Typical idempotent commutative monoid

I (2A,∪,∅).
I Hasse diagram of representation in J -classes:

1

∗a ∗b
∗c

∗ab
∗ac ∗bc

∗abc

27/49

FO with one variable

Example: FO with one variable
The following conditions are equivalent:
1. L is definable by an FO1 sentence.
2. L is a boolean combination of languages of the form A∗aA∗.
3. The syntactic monoid of L is idempotent and commutative:

∀s, t ∈ M(L), s = s2 and st = ts.

Proof of 1⇒ 2
I In FO1, binary symbol < is useless: x 6 x ≡ >.
I Every formula equivalent to ∃xϕ(x), with ϕ quantifier-free.
I Get rid of negation in atoms: ¬b(x) ≡

∨
b 6=a a(x). If a 6= b: a(x) ∧ b(x) ≡ ⊥.

I Hence
∧

b∈B b(x) ∧
∧

c∈C ¬c(x) reduce to a single predicate a(x) or ⊥,
I ∃x .(a(x) ∨ b(x)) ≡ ∃x .a(x) ∨ ∃x .b(x) reduce to boolean combination

of formulas ϕ = ∃x .a(x).
I L(∃x .a(x)) = A∗aA∗.

28/49

FO with one variable

Example: FO with one variable
The following conditions are equivalent:
1. L is definable by an FO1 sentence.
2. L is a boolean combination of languages of the form A∗aA∗.
3. The syntactic monoid of L is idempotent and commutative:

∀s, t ∈ M(L), s = s2 and st = ts.

Proof of 2⇒ 1
I L(∃x .a(x)) = A∗aA∗.

28/49

FO with one variable

Example: FO with one variable
The following conditions are equivalent:
1. L is definable by an FO1 sentence.
2. L is a boolean combination of languages of the form A∗aA∗.
3. The syntactic monoid of L is idempotent and commutative:

∀s, t ∈ M(L), s = s2 and st = ts.

Proof of 2⇒ 3
I The syntactic monoid M(A∗aA∗) = {1, a} is idempotent and commutative.
I Idempotency and commutativity are inherited by boolean combinations.

28/49

FO with one variable

Example: FO with one variable
The following conditions are equivalent:
1. L is definable by an FO1 sentence.
2. L is a boolean combination of languages of the form A∗aA∗.
3. The syntactic monoid of L is idempotent and commutative:

∀s, t ∈ M(L), s = s2 and st = ts.

Proof of 3⇒ 2
I Let ϕ : A∗ → M recognizing L, with M idempotent and commutative.
I L =

⋃
s∈ϕ(L) ϕ

−1(s) enough to show ϕ−1(s) ∈ Bool({A∗aA∗ | a ∈ A}).
I Since M idempotent commutative: alph(u) = alph(v)⇒ ϕ(u) = ϕ(v).
I Let [alph = B] be the set of words of alphabet exactly B.
I ϕ−1(s) =

⋃
B∈As

[alph = B] for As = {B ⊆ A | ∃u ∈ ϕ−1(s), alph(u) = B}.
I [alph = B] =

⋂
b∈B A∗bA∗ \

⋃
c /∈B A∗cA∗.

28/49

Piecewise testable languages

I For u = a1 · · · an with ai ∈ A, let

L(u) = A∗a1A∗a2 · · ·A∗anA∗.

L(u) is the set of all words having u as a (scattered) subword.
I Write u v v if v ∈ L(u): u is a (scattered) subword of v .
I Piecewise testable language: boolean combination of languages L(u), u ∈ A∗.
I Examples:

I B∗ = A∗ \
⋃

c /∈B A∗cA∗

I (alph = B) =
⋂

b∈B A∗bA∗ \
⋃

c /∈B A∗cA∗

I Questions: how to decide whether a language is piecewise testable?

29/49

BΣ1(<) fragment of FO(<)

I Piecewise testable languages have a logical characterization.
I BΣ1(<): fragment of FO(<) consisting of Boolean closure of formulas of the

form
∃x1 . . . ∃xkϕ(x1, . . . , xk)

with ϕ quantifier-free.

I Clearly BΣ1(<) can express piecewise testability:

A∗a1A∗a2 · · ·A∗anA∗ = L(∃x1 . . . ∃xn ∧
∧

(xi < xi+1) ∧ ai (xi)).

I Conversely, using disjunctive normal form and ∃~x
∨

i ϕi ≡
∨

i ∃~xϕi , one can
start from ∃~xϕ where ϕ is a conjunction of atoms.

I One can get rid of negative atoms.
I Therefore, ϕ fixes conditions on the order of xi ’s and their labels.
I This defines a piecewise testable language.

30/49

BΣ1(<) fragment of FO(<)

I Piecewise testable languages have a logical characterization.
I BΣ1(<): fragment of FO(<) consisting of Boolean closure of formulas of the

form
∃x1 . . . ∃xkϕ(x1, . . . , xk)

with ϕ quantifier-free.
I Clearly BΣ1(<) can express piecewise testability:

A∗a1A∗a2 · · ·A∗anA∗ = L(∃x1 . . . ∃xn ∧
∧

(xi < xi+1) ∧ ai (xi)).

I Conversely, using disjunctive normal form and ∃~x
∨

i ϕi ≡
∨

i ∃~xϕi , one can
start from ∃~xϕ where ϕ is a conjunction of atoms.

I One can get rid of negative atoms.
I Therefore, ϕ fixes conditions on the order of xi ’s and their labels.
I This defines a piecewise testable language.

30/49

BΣ1(<) fragment of FO(<)

I Piecewise testable languages have a logical characterization.
I BΣ1(<): fragment of FO(<) consisting of Boolean closure of formulas of the

form
∃x1 . . . ∃xkϕ(x1, . . . , xk)

with ϕ quantifier-free.
I Clearly BΣ1(<) can express piecewise testability:

A∗a1A∗a2 · · ·A∗anA∗ = L(∃x1 . . . ∃xn ∧
∧

(xi < xi+1) ∧ ai (xi)).

I Conversely, using disjunctive normal form and ∃~x
∨

i ϕi ≡
∨

i ∃~xϕi , one can
start from ∃~xϕ where ϕ is a conjunction of atoms.

I One can get rid of negative atoms.
I Therefore, ϕ fixes conditions on the order of xi ’s and their labels.
I This defines a piecewise testable language.

30/49

Simon’s theorem for piecewise testable languages

Piecewise testable languages, BΣ1, J -trivial monoids (Simon-Thomas)
The following conditions are equivalent.
1. L is BΣ1(<) definable.
2. L is piecewise testable.
3. M(L) is finite and J -trivial.

Recall: J -trivial means u J v ⇒ u = v .

Corollary
BΣ1(<) definability is decidable.

Example: (ab)+ is not piecewise testable (on any alphabet containing {a, b}).

31/49

Simon’s theorem for piecewise testable languages: proof (1)
I Note that L(u) is the set of words having u as a (scattered) subword.
I Define u ∼k v if u and v have the same (scattered) subwords of length 6 k .

Example: abba ∼2 baba 6∼2 aabb.

I ∼k ⊆ A∗ × A∗ is a congruence of finite index (at most |2A6k | classes).

TFAE:

1. L is piecewise testable.

2. There exists k > 0 such that ∼k ⊆ ∼L.

32/49

Simon’s theorem for piecewise testable languages: proof (1)
I Note that L(u) is the set of words having u as a (scattered) subword.
I Define u ∼k v if u and v have the same (scattered) subwords of length 6 k .

Example: abba ∼2 baba 6∼2 aabb.

I ∼k ⊆ A∗ × A∗ is a congruence of finite index (at most |2A6k | classes).

TFAE:

1. L is piecewise testable.

2. There exists k > 0 such that ∼k ⊆ ∼L.

Proof of 1⇒ 2

I L =
⋃(⋂

L(ui) ∩
⋂

(A∗ \ L(vj))
)
. (Finite union and intersections).

I Let k = max{|ui |, |vj |}.
I If u ∼k v , then xuy ∼k xvy for all x , y .
I So by def. of k , xuy , xvy belong to the same languages L(ui), L(vj).
I Hence xuy ∈ L iff xvy ∈ L, therefore u ∼L v .

32/49

Simon’s theorem for piecewise testable languages: proof (1)
I Note that L(u) is the set of words having u as a (scattered) subword.
I Define u ∼k v if u and v have the same (scattered) subwords of length 6 k .

Example: abba ∼2 baba 6∼2 aabb.

I ∼k ⊆ A∗ × A∗ is a congruence of finite index (at most |2A6k | classes).

TFAE:

1. L is piecewise testable.

2. There exists k > 0 such that ∼k ⊆ ∼L.

Proof of 2⇒ 1
I L = η−1L (ηL(L)) =

⋃
s∈ηL(L) η

−1
L (s) is a union of ∼L-classes.

I If ∼k ⊆ ∼L, then L is a (finite) union of ∼k -classes.
I Enough to show that any ∼k -class is piecewise testable.
I The ∼k class of a word u is

⋂
wvu,|w |6k

L(w) ∩
⋂

w 6vu,|w |6k

A∗ \ L(w).

32/49

Simon’s theorem for piecewise testable languages: proof (2)

Proof of: L is piecewise testable =⇒ M(L) is J -trivial.
I Write u = ηL(u) where ηL : A∗ → M(L) is the syntactic morphism.
I Assume u J v . We want u = v .

I By definition of J : u = xvt and v = yuz . Hence u = xyuzt = (xy)nu(zt)n.
I Let k be such that ∼k ⊆ ∼L.
I Let n be such that (xy)nu(zt)n ∼k (xy)n+1u(zt)n+1.
I Therefore, (xy)nu(zt)n ∼k y(xy)nu(zt)nz
I Since ∼k ⊆ ∼L, we get u = (xy)nu(zt)n = y(xy)nu(zt)nz = v .

33/49

Simon’s theorem for piecewise testable languages: proof (2)

Proof of: L is piecewise testable =⇒ M(L) is J -trivial.
I Write u = ηL(u) where ηL : A∗ → M(L) is the syntactic morphism.
I Assume u J v . We want u = v .
I By definition of J : u = xvt and v = yuz . Hence u = xyuzt = (xy)nu(zt)n.
I Let k be such that ∼k ⊆ ∼L.
I Let n be such that (xy)nu(zt)n ∼k (xy)n+1u(zt)n+1.
I Therefore, (xy)nu(zt)n ∼k y(xy)nu(zt)nz
I Since ∼k ⊆ ∼L, we get u = (xy)nu(zt)n = y(xy)nu(zt)nz = v .

33/49

Simon’s theorem for piecewise testable languages: proof (3)

I Recall that s 6J t if s = xty for some x , y ∈ M.
I Note that if M(L) is J -trivial, then 6J is a partial order on M(L).
I By definition of 6J , multiplying an element yields an element

I either equal to the original one,
I or strictly smaller.

34/49

Simon’s theorem for piecewise testable languages: proof (4)

M(L) J -trivial =⇒ L piecewise testable: Proof of O. Klima (1)
I Let m = size of largest <J -chain, and k = 2m − 2. One shows ∼k ⊆ ∼L.
I Let u ∼k v with u = u(1) · · · u(p) and v = v(1) · · · v(q).
I u[`1, . . . , `k]

def
= word made of letters at positions {`1, . . . , `k} from left to right

I For i 6 j u[i • j] def
= u[i , i + 1, . . . , j].

35/49

Simon’s theorem for piecewise testable languages: proof (4)

M(L) J -trivial =⇒ L piecewise testable: Proof of O. Klima (1)
I Let m = size of largest <J -chain, and k = 2m − 2. One shows ∼k ⊆ ∼L.
I Let u ∼k v with u = u(1) · · · u(p) and v = v(1) · · · v(q).
I u[`1, . . . , `k]

def
= word made of letters at positions {`1, . . . , `k} from left to right

I For i 6 j u[i • j] def
= u[i , i + 1, . . . , j].

I Position i in u is blue if u[1 • (i − 1)]·u(i) <J u[1 • (i − 1)].
I At most m − 1 blue positions i1 < · · · < ir in u.

i1

i2

35/49

Simon’s theorem for piecewise testable languages: proof (4)

M(L) J -trivial =⇒ L piecewise testable: Proof of O. Klima (2)

i1

i2

I Claim1: any subword of u containing all blue positions is ∼L-equvalent to u.
Indeed for instance, by definition of blue indices, for any i` < i < i`+1

u[1 • i`] = u[1 • (i − 1)] = u[1 • i]
=⇒ u[1 • i`]u(i) = u[1 • i`]

This is where the hypothesis M(L) is J -trivial is used.
I For same reason: i1 < · · · < ir carries leftmost occurrence of u[i1 • ir].

35/49

Simon’s theorem for piecewise testable languages: proof (4)

M(L) J -trivial =⇒ L piecewise testable: Proof of O. Klima (2)
I u ∼k v ⇒ u[i1, . . . , ir] v v = b1 · · · bq.
I Let v (̃ii) · · · v (̃ir) be its leftmost occurrence in v . Call ĩ1, . . . , ĩr blue in v .

35/49

Simon’s theorem for piecewise testable languages: proof (4)

M(L) J -trivial =⇒ L piecewise testable: Proof of O. Klima (2)
I u ∼k v ⇒ u[i1, . . . , ir] v v = b1 · · · bq.
I Let v (̃ii) · · · v (̃ir) be its leftmost occurrence in v . Call ĩ1, . . . , ĩr blue in v .
I Dually, position j in v is red if v [j − 1, q] >J v(j)v [j − 1, q].
I At most m − 1 red positions j1 < · · · < js in v .
I Corresponding red rightmost positions in u: j̃1, . . . , j̃s .

35/49

Simon’s theorem for piecewise testable languages: proof (4)

M(L) J -trivial =⇒ L piecewise testable: Proof of O. Klima (2)
I u ∼k v ⇒ u[i1, . . . , ir] v v = b1 · · · bq.
I Let v (̃ii) · · · v (̃ir) be its leftmost occurrence in v . Call ĩ1, . . . , ĩr blue in v .
I Dually, position j in v is red if v [j − 1, q] >J v(j)v [j − 1, q].
I At most m − 1 red positions j1 < · · · < js in v .
I Corresponding red rightmost positions in u: j̃1, . . . , j̃s .
I Claim2: u[i1, . . . , ir , j̃1, . . . , j̃s] = v [̃i1, . . . , ĩr , j1, . . . , js].

I The blue (red) positions carry the same word in u and v .
I The way they are shuffled in u and v only depends on (small) subwords.

35/49

Simon’s theorem for piecewise testable languages: proof (4)

M(L) J -trivial =⇒ L piecewise testable: Proof of O. Klima (2)
I u ∼k v ⇒ u[i1, . . . , ir] v v = b1 · · · bq.
I Let v (̃ii) · · · v (̃ir) be its leftmost occurrence in v . Call ĩ1, . . . , ĩr blue in v .
I Dually, position j in v is red if v [j − 1, q] >J v(j)v [j − 1, q].
I At most m − 1 red positions j1 < · · · < js in v .
I Corresponding red rightmost positions in u: j̃1, . . . , j̃s .
I Claim2: u[i1, . . . , ir , j̃1, . . . , j̃s] = v [̃i1, . . . , ĩr , j1, . . . , js].

I The blue (red) positions carry the same word in u and v .
I The way they are shuffled in u and v only depends on (small) subwords.

I Consider in u a blue index ih and a red one j̃`, with for simplicity u(ih) 6= u(̃j`).

ih < j̃` ⇔ u(i1) · · · u(ih)u(̃j`) · · · u(̃js) v u

⇔ v(ĩ1) · · · v(ĩh)v(j`) · · · v(js) v v

⇔ ĩh < j`

35/49

Simon’s theorem for piecewise testable languages: proof (4)

M(L) J -trivial =⇒ L piecewise testable: Proof of O. Klima (3)
I Claim1: any subword of u containing all blue positions is ∼L-equvalent to u.
I Claim2: u[i1, . . . , ir , j̃1, . . . , j̃s] = v [̃i1, . . . , ĩr , j1, . . . , js]

I Hence
u ∼L u[i1, . . . , ir , j̃1, . . . , j̃s] = v [̃i1, . . . , ĩr , j1, . . . , js] ∼L v

that is
u ∼L v .

35/49

Star-free languages

I Star-free languages: built from ∅ and letters using finitely many times
boolean operations and product.
1. ∅ ∈ SF(A∗) and {a} ∈ SF(A∗),
2. K , L ∈ SF(A∗)⇒ K ∪ L ∈ SF(A∗),
3. K , L ∈ SF(A∗)⇒ A∗ \ K ∈ SF(A∗),
4. K , L ∈ SF(A∗)⇒ KL ∈ SF(A∗).

I Examples of star-free languages:
I A∗ = A∗ \∅,
I Finite languages,
I Piecewise testable languages,
I B∗ = A∗ \

⋃
c /∈B A∗cA∗,

I (ab)+ = aA∗ ∩ A∗b ∩ (A∗ \ A∗(aa ∪ bb)A∗)
This is not piecewise testable, because the syntactic monoid is not J -trivial.

I Star-free languages are regular, but (aa)∗ is not star-free. How to prove it?

36/49

Star-free languages

I Star-free languages: built from ∅ and letters using finitely many times
boolean operations and product.
1. ∅ ∈ SF(A∗) and {a} ∈ SF(A∗),
2. K , L ∈ SF(A∗)⇒ K ∪ L ∈ SF(A∗),
3. K , L ∈ SF(A∗)⇒ A∗ \ K ∈ SF(A∗),
4. K , L ∈ SF(A∗)⇒ KL ∈ SF(A∗).

I Examples of star-free languages:
I A∗ = A∗ \∅,
I Finite languages,
I Piecewise testable languages,
I B∗ = A∗ \

⋃
c /∈B A∗cA∗,

I (ab)+ = aA∗ ∩ A∗b ∩ (A∗ \ A∗(aa ∪ bb)A∗)
This is not piecewise testable, because the syntactic monoid is not J -trivial.

I Star-free languages are regular, but (aa)∗ is not star-free. How to prove it?

36/49

Aperiodic monoids

I A finite monoid is aperiodic if it has only trivial subgroups, or equivalently:

∃n,∀s ∈ M, sn = sn+1

or equivalently again
∀s ∈ M, sω = sω+1

I A language is aperiodic if it is recognized by a finite aperiodic monoid.

37/49

The Schützenberger-Kamp-McNaughton-Papert theorem

Theorem Schützenberger-Kamp-McNaughton-Papert
For a word language L ⊆ A∗, TFAE
1. L can be expressed in FO(<).
2. L can be expressed in FO3(<).
3. L can be expressed in LTL with past operators.
4. L can be expressed in pure future LTL.
5. L is star-free.
6. L is aperiodic.
7. L is recognizable and its minimal automaton is counter-free: no loop

q u−→ p u−→ · · · u−→ q with u ∈ A+ and p 6= q.

I A pool of difficult results.
I Elegant proof of Th. Wilke for 4⇐⇒ 6, refined by Diekert, Gastin, Kufleitner.
I 6 =⇒ decidable! Complexity of 7 : PSPACE-complete (J. Stern).
I Some implications are trivial. Eg. 4⇒ 3⇒ 2⇒ 1, or 6⇔ 7.

38/49

Example: L = (ab)+

I Counter-free (sink ommitted):

1 2 3
a

b

a

I M(L) has 6 elements {1, a, b, a2, ab, ba} and s2 = s3 for all s ∈ M.
I Star-free (ab)+ = aA∗ ∩ A∗b ∩ (A∗ \ A∗(aa ∪ bb)A∗).
I FO(<) and FO3(<) ∀x (a(x) ∨ b(x)) ∧

∀y∀z (z = y + 1)⇒ [a(y)⇔ b(z)] ∧
first = {a} ∧ last = {b}.

I LTL: G(a ∨ b) ∧ a ∧ F(b ∧ ¬X>) ∧ G(a↔ ¬Xb)

39/49

Example: L = (ab)+

I Counter-free (sink ommitted):

1 2 3
a

b

a

I M(L) has 6 elements {1, a, b, a2, ab, ba} and s2 = s3 for all s ∈ M.
I Star-free (ab)+ = aA∗ ∩ A∗b ∩ (A∗ \ A∗(aa ∪ bb)A∗).
I FO(<) and FO3(<) ∀x (a(x) ∨ b(x)) ∧

∀y∀z (z = y + 1)⇒ [a(y)⇔ b(z)] ∧
first = {a} ∧ last = {b}.

I LTL: G(a ∨ b) ∧ a ∧ F(b ∧ ¬X>) ∧ G(a↔ ¬Xb)

39/49

Example: L = (ab)+

I Counter-free (sink ommitted):

1 2 3
a

b

a

I M(L) has 6 elements {1, a, b, a2, ab, ba} and s2 = s3 for all s ∈ M.
I Star-free (ab)+ = aA∗ ∩ A∗b ∩ (A∗ \ A∗(aa ∪ bb)A∗).
I FO(<) and FO3(<) ∀x (a(x) ∨ b(x)) ∧

∀y∀z (z = y + 1)⇒ [a(y)⇔ b(z)] ∧
first = {a} ∧ last = {b}.

I LTL: G(a ∨ b) ∧ a ∧ F(b ∧ ¬X>) ∧ G(a↔ ¬Xb)

39/49

Example: L = (ab)+

I Counter-free (sink ommitted):

1 2 3
a

b

a

I M(L) has 6 elements {1, a, b, a2, ab, ba} and s2 = s3 for all s ∈ M.
I Star-free (ab)+ = aA∗ ∩ A∗b ∩ (A∗ \ A∗(aa ∪ bb)A∗).
I FO(<) and FO3(<) ∀x (a(x) ∨ b(x)) ∧

∀y∀z (z = y + 1)⇒ [a(y)⇔ b(z)] ∧
first = {a} ∧ last = {b}.

I LTL: G(a ∨ b) ∧ a ∧ F(b ∧ ¬X>) ∧ G(a↔ ¬Xb)

39/49

From Star-free to Aperiodic (easy)

Lemma: Star-free are aperiodic
Any star-free language is aperiodic.

In particular, (aa)+ is not aperiodic.

Proof Induction on L ∈ SF(A∗): find i(L) such that

∀u ∈ A∗, ui(L) ∼L ui(L)+1.

I i(∅) = 0 and i(a) = 2.
I i(A∗ \ L) = i(L),
I i(K ∪ L) = max(i(K), i(L)),
I i(KL) = i(K) + i(L): if w = xui(K)+i(L)y ∈ KL, then

I either xui(K)y ′ ∈ K for some prefix of xui(K)y ′ of w , whence xui(K)+1y ′ ∈ K .
Therefore xui(K)+i(L)+1y ∈ KL,

I or symmetric case.

40/49

From Star-free to Aperiodic (easy)

Lemma: Star-free are aperiodic
Any star-free language is aperiodic.

In particular, (aa)+ is not aperiodic.

Proof Induction on L ∈ SF(A∗): find i(L) such that

∀u ∈ A∗, ui(L) ∼L ui(L)+1.

I i(∅) = 0 and i(a) = 2.
I i(A∗ \ L) = i(L),
I i(K ∪ L) = max(i(K), i(L)),
I i(KL) = i(K) + i(L): if w = xui(K)+i(L)y ∈ KL, then

I either xui(K)y ′ ∈ K for some prefix of xui(K)y ′ of w , whence xui(K)+1y ′ ∈ K .
Therefore xui(K)+i(L)+1y ∈ KL,

I or symmetric case.

40/49

From Aperiodic to Star-free (difficult)

Original intuition of the proof from Th. Wilke.
Also works from aperiodic to LTL.

I See M as a transformation monoid, acting on set Q = M of states.
I Induction on (|M|, |A|) ordered lexicographically.
I Either all letters induce identity on Q: easy.
I Or some letter a does not act surjectively on Q. [Aperiodicity used here].
I In this case, decompose element on M as u1au2a · · · aun.

I The initial and final segments u1, un are on a smaller alphabet.
I The intermediate segments use less states.

41/49

Tool for Induction (Aperiodic to Star-free)

I Suitable construction for the induction [Diekert, Gastin]
I For m ∈ M, define a new internal composition on the set mM ∩Mm:

xm ◦my = xmy .

I One can check that this is a well-defined product.
I We have mx ◦my = mxy , hence

I (mM ∩Mm, ◦,m) is a monoid.
I If M is aperiodic, then so is (mM ∩Mm, ◦,m).
I If M is aperiodic and m 6= 1, then |mM ∩Mm| < |M|.

Since in this case 1 /∈ mM: ms = 1⇒ mωsω = 1⇒ m.(mωsω) = 1⇒ m = 1.

42/49

From Aperiodic to Star-free (1)

Proof of V. Diekert, M. Kufleitner (adapted from Th. Wilke)
I Fix α : A∗ → M aperiodic and let L = α−1(α(L)) =

⋃
s∈α(L) α

−1(s).
I Induction on (|M|, |A|) ordered lexicographically.
I Enough to show that α−1(s) is star-free.
I Assume first s = 1. Then: α−1(1) = {a ∈ A | α(a) = 1}∗, hence star-free.

Indeed, uv = 1⇒ u = v = 1.

43/49

From Aperiodic to Star-free (2)

Proof of V. Diekert, M. Kufleitner (adapted from Th. Wilke)
I Assume now s 6= 1.
I If α(u) = s, then u contains a letter a such that α(a) 6= 1. Let a = α(a).
I Let B = A \ {a}, B = α(B∗) and β : B∗ → B be the restriction of α to B∗.
I B is a submonoid of M (and will be considered as an alphabet, too).

I u = u1au2au3 with a /∈ alph(u1u3) yields

α−1(s) =
⋃

a∈A,α(a)6=1

⋃
s=s1s2s3

β−1(s1) · (α−1(s2) ∩ aA∗ ∩ A∗a) · β−1(s3)

I By induction hypothesis, we have β−1(si) star-free (|B| 6 |M| and |B| < |A|).
I Therefore we are left to show α−1(s) ∩ aA∗ ∩ A∗a is star-free.

44/49

From Aperiodic to Star-free (2)

Proof of V. Diekert, M. Kufleitner (adapted from Th. Wilke)
I Assume now s 6= 1.
I If α(u) = s, then u contains a letter a such that α(a) 6= 1. Let a = α(a).
I Let B = A \ {a}, B = α(B∗) and β : B∗ → B be the restriction of α to B∗.
I B is a submonoid of M (and will be considered as an alphabet, too).

I u = u1au2au3 with a /∈ alph(u1u3) yields

α−1(s) =
⋃

a∈A,α(a)6=1

⋃
s=s1s2s3

β−1(s1) · (α−1(s2) ∩ aA∗ ∩ A∗a) · β−1(s3)

I By induction hypothesis, we have β−1(si) star-free (|B| 6 |M| and |B| < |A|).
I Therefore we are left to show α−1(s) ∩ aA∗ ∩ A∗a is star-free.

44/49

From Aperiodic to Star-free (3)

Proof of V. Diekert, M. Kufleitner (adapted from Th. Wilke)
I Let us show that α−1(s) ∩ aA∗ ∩ A∗a is star-free.
I Let B∗ be the free monoid over alphabet B = α(B∗) (could have |B| > |A|).

I “Decompose” α as aA∗ σ−−−−−→ B∗
γ−−−−→ (aM ∩Ma, ◦, a), as follows.

I σ(au1au2 · · · aun) = β(u1) · β(u2) · · ·β(un). Erase a
I γ morphism defined, for b ∈ B, by γ(b) = aba. Reintroduce it morphically!

I Almost a factorization of α.

α−1(s) ∩ aA∗ ∩ A∗a = σ−1(γ−1(s)).a

I Since |aM ∩Ma| < |M|, we get γ−1(s) ∈ SF(B∗).
I It remains to show that σ−1 preserves star-freeness.

I For a one-letter word b ∈ B, it holds σ−1(b) = aβ−1(b): use |B| < |A|.
I SF operators commute with σ−1, eg., σ−1(K ∪ L) = σ−1(K) ∪ σ−1(L).

45/49

From Aperiodic to Star-free (3)

Proof of V. Diekert, M. Kufleitner (adapted from Th. Wilke)
I Let us show that α−1(s) ∩ aA∗ ∩ A∗a is star-free.
I Let B∗ be the free monoid over alphabet B = α(B∗) (could have |B| > |A|).

I “Decompose” α as aA∗ σ−−−−−→ B∗
γ−−−−→ (aM ∩Ma, ◦, a), as follows.

I σ(au1au2 · · · aun) = β(u1) · β(u2) · · ·β(un). Erase a
I γ morphism defined, for b ∈ B, by γ(b) = aba. Reintroduce it morphically!

I Almost a factorization of α.

α−1(s) ∩ aA∗ ∩ A∗a = σ−1(γ−1(s)).a

I Since |aM ∩Ma| < |M|, we get γ−1(s) ∈ SF(B∗).
I It remains to show that σ−1 preserves star-freeness.

I For a one-letter word b ∈ B, it holds σ−1(b) = aβ−1(b): use |B| < |A|.
I SF operators commute with σ−1, eg., σ−1(K ∪ L) = σ−1(K) ∪ σ−1(L).

45/49

From Aperiodic to Star-free (3)

Proof of V. Diekert, M. Kufleitner (adapted from Th. Wilke)
I Let us show that α−1(s) ∩ aA∗ ∩ A∗a is star-free.
I Let B∗ be the free monoid over alphabet B = α(B∗) (could have |B| > |A|).

I “Decompose” α as aA∗ σ−−−−−→ B∗
γ−−−−→ (aM ∩Ma, ◦, a), as follows.

I σ(au1au2 · · · aun) = β(u1) · β(u2) · · ·β(un). Erase a
I γ morphism defined, for b ∈ B, by γ(b) = aba. Reintroduce it morphically!

I Almost a factorization of α.

α−1(s) ∩ aA∗ ∩ A∗a = σ−1(γ−1(s)).a

I Since |aM ∩Ma| < |M|, we get γ−1(s) ∈ SF(B∗).
I It remains to show that σ−1 preserves star-freeness.

I For a one-letter word b ∈ B, it holds σ−1(b) = aβ−1(b): use |B| < |A|.
I SF operators commute with σ−1, eg., σ−1(K ∪ L) = σ−1(K) ∪ σ−1(L).

45/49

Summary

I Many classes of regular languages have an algebraic characterization.
I General framework given in Eilenberg-Reiterman theorem.
I Variety of regular languages V : A 7→ A∗V, closed under

I boolean combinations,
I inverse image by homomorphisms ϕ : A∗ → B∗,
I quotients L 7→ a−1L, L 7→ La−1.

I Variety of finite monoids: class closed under (M,N) 7→ M × N and division.
I Eilenberg’s theorem: Bijective correspondence between varieties of regular

languages and varieties of monoids.
I Reiterman’s theorem: Equational definition of varieties.

46/49

Extensions

I To other classes than varieties
I Drop complement: Positive varieties (Pin)
I Drop closure under quotients (Pippenberg)
I Drop both (Polák)
I General framework: duality (Gehrke, Grigorieff, Pin): definition by

(in)equations/identities.
I To other structures, like infinite words, Mazurkiewicz traces, trees.

47/49

Some related references
V. Diekert and P. Gastin. First-order definable languages. In J. Flum, E. Grädel, and
T. Wilke, editors, Logic and Automata: History and Perspectives, volume 2 of Texts in
Logic and Games, pages 261–306. Amsterdam University Press, 2008.

V. Diekert, P. Gastin, and M. Kufleitner. A survey on small fragments of first-order logic
over finite words. Int. J. Found. Comp. Sci. (IJFCS), 19(3):513–548, 2008.

O. Klíma. Piecewise testable languages via combinatorics on words. In Words’09, 2009.

J.-E. Pin. Syntactic semigroups. In G. Rozenberg and A. Salomaa, editors, Handbook of
formal languages, vol. 1, pages 679–746. Springer, New York, NY, USA, 1997.

Th. Schwentick, D. Thérien, and H. Vollmer. Partially-ordered two-way automata: A new
characterization of DA. In DLT’02, pages 1–28. Springer, 2002.

P. Tesson and D. Therien. Diamonds are forever: The variety DA. In Semigroups,
Algorithms, Automata and Languages, Coimbra (Portugal) 2001, pages 475–500. World
Scientific, 2002.

P. Tesson and D. Thérien. Logic meets algebra: the case of regular languages. Logical
Methods in Computer Science, 3(1), 2007.

W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa, editors,
Handbook of formal languages, vol. 3: Beyond words, pages 389–455. Springer, 1997.

Th. Wilke. Classifying discrete temporal properties. In STACS’99, LNCS, pages 32–46.
Springer, 1999.

48/49

Questions?

49/49

	Motivation
	Regular languages and monoids
	Syntactic monoids

	Background on finite monoids
	Idempotents
	Green's relations

	Logics
	First order logic
	LTL

	Expressiveness results
	FO with one variable
	Piecewise testable languages
	First-order logic, star-free languages and aperiodic monoids

	Summary

