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Motivation
I Word languages are used in computer science for many purposes.
I Natural models for

I (text) programs,
I inputs of programs,
I behaviors of programs,
I etc.

I Several formalisms to define regular sets of words: logics, regexp, automata. . .
How to compare their expressive power?

The talk shows examples exploiting connections with algebra to answer this
question.

Algebraic
Tools
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high level

Automata

Logics
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Motivation: some examples

I Main question in this talk: expressiveness.
Typical questions:

I Compare the expressive power of logic L1 and logic L2.
I Is temporal logic with past and future operators more expressive than pure

future temporal logic?

I Is temporal logic with only unary operators weaker?
I Are FO(<) and LTL on words equally expressive?
I Is a given regular language L expressible in first-order logic?
I A polynomial is a language of the form

⋃
finite B

∗
0 a1B

∗
1 · · · akB∗k .

Given a regular language L, is it decidable if
I L is a polynomial?
I L is a finite boolean combination of polynomials?
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Link between logic and algebra for regular languages

I A language L ⊆ A∗ is recognized by a monoid M if there is a morphism
ϕ : A∗ → M such that

L = ϕ−1(ϕ(L))

I In other words: it is enough to look at ϕ image to decide membership to L.

Thm. Kleene-Büchi
For a language L ⊆ A∗, it is equivalent

I to be recognized by a finite automaton,
I to be definable by a regular expression,
I to be definable in Monadic Second Order logic,
I to be recognized by a finite monoid.

4/49



Regular languages and monoids

Language L, Regular exp

Minimal automaton Amin(L)

ab∗
High-level
description

0 1 2
a a

b

b a, b

Low-level
description

“Easy” Harder
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Regular languages and monoids

Language L, Regular exp

Minimal automaton Amin(L)

ab∗
High-level
description

0 1 2
a a

b

b a, b

Low-level
description

“Easy” Harder
Syntactic monoid M(L)

(finite, [K56])
Algebra

 algorithms

0 1 2

a 1 2 2

b 2 1 2

{ε, a, b, a2}
ab = a, ba = a2,
b2 = b
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High-level vs. algebraic properties: prominent results

Language L Amin(L) Synt(L)
Logical

definability

Star-free Counter-free A FO(<), LTL
[Sch65,McN-P71,K68]

Piecewise testable Very weak + . . . J Bool(Σ1)

[S75,Th87]

⊎
f
∏

non ambiguous 2-way part. ord. DA FO2(<),
UTL,Σ2 ∩ Π2

[Sch76,SchThV01,ThW98,EVW97,PW97]

Loc. threshold testable Forbidden patterns ACom ∗ LI FO(+1)

[S85,ThW85,BP89]
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Some tools

I Syntactic monoid of a regular language.
I Monoid structure, in terms of ideals.
I Basic and more advanced pumping arguments.
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Outline

Motivation

Regular languages and monoids
Syntactic monoids

Background on finite monoids
Idempotents
Green’s relations

Logics
First order logic
LTL

Expressiveness results
FO with one variable
Piecewise testable languages
First-order logic, star-free languages and aperiodic monoids

Summary
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Syntactic monoids

I Notation: Monoid (M, ·, 1), with · associative, 1 neutral.
I A∗ free monoid over A.
I Morphism ϕ : M → N.
I If L ⊆ A∗, its syntactic congruence ∼L ⊆ A∗ × A∗ is defined by

u ∼L v iff ∀x , y ∈ xuy ∈ L⇐⇒ xvy ∈ L.

I It is indeed a congruence: equivalence relation compatible with concatenation.

u ∼L v =⇒ [x(uw)y ∈ L⇔ x(vw)y ∈ L] =⇒ uw ∼L vw

I Syntactic monoid M(L) = A∗/∼L and syntactic morphism ηL : A∗ → M(L).

Thm. (Myhill)
A language is regular if and only if its syntactic congruence has finite index.
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Syntactic monoids
I Say that M1 divides M2 if M1 is a quotient of a submonoid of M2.

Syntactic monoid and recognition
Monoids recognizing L are exactly those which are divided by M(L).

Proof
I ηL recognizes L since η−1L (ηL(L)) = L:

u ∈ η−1L (ηL(L)) ⇒ ηL(u) ∈ ηL(L) ⇒ ∃v ∈ L, u ∼L v ⇒ u ∈ L.

I If M(L) divides M:

A∗ M(L)

N M

β surj.

α one-to-one

ηL

ϕ

Then α ◦ ϕ recognizes L.
I Conversely, if ϕ : A∗ → M recognizes L, then ϕ(u) = ϕ(v) implies u ∼L v .

Therefore there is a surjective morphism β from ϕ(A∗) into M(L).
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Syntactic monoids

I M(L) is the monoid of transitions of the minimal automaton of L.
Each word induces a mapping Q → Q (hence |M(L)| 6 QQ).
⇒ Algorithm to compute M(L) (see Example next slide).

I In particular, we have M(A∗ \ L) = M(L)

I M(L1 ∩ L2) and M(L1 ∪ L2) divide M(L1)×M(L2).
I Consequence: properties defined by identities are preserved through boolean

combinations.
I For instance, if M(L1) and M(L2) are commutative, then so are

I M(L1 ∩ L2),
I M(L1 ∪ L2)
I M(L1 \ L2).
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Syntactic monoid: example
I Example: let A = {a, b, c} and L = A∗abA∗.
I The minimal automaton of L is the following:

1 2 3

b, c a a, b, c

a

c

b

Generators
1 2 3

a 2 2 3
b 1 3 3
c 1 1 3

Relations
aa = a = ca, ac = cb = cc = c
bb = b = bc, ab = bab = 0

Elements
1 2 3

∗ 1 1 2 3
∗ a 2 2 3
∗ b 1 3 3
∗ c 1 1 3
∗ ab 3 3 3
ba 2 3 3
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Background on finite
monoids
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Idempotents in monoids

I An idempotent is an element e ∈ M such that e = ee.
I Any m ∈ M has a single power which is idempotent, denoted mω.

. . .
m m2 m3 mk−1

mk

mk+1

mω = (mω)2

I Since the loop has at most |M| elements, m|M|! = mω.
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Ideal theory of monoids: Green’s relations

I Automata exhibit some structure: graph representation, strongly connected
components, DAG of scc, etc.

I One can extract such kind of information also out of a monoid M.

I The right action of M on itself yields a labeled graph R(M).

m1 m1m2

m2

Strongly connected components of R(M) are called R-classes.
I Formally, u and v are R-equivalent, written u R v if

1. There exists x ∈ M such that v = ux , and
2. There exists y ∈ M such that u = vy .

I Or equivalently, if uM = vM: u and v generate the same right ideal.
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Green’s relations
I u R v if uM = vM,
I u L v if Mu = Mv ,
I u J v if MuM = MvM,
I H= R∩ L.

{a, b, c}∗ab{a, b, c}∗

1 2 3

b, c a a, b, c

a

c

b

I (ca = a) ∧ (ac = c)⇒ a R c .
I (ba = ba) ∧ (cba = a)⇒ a L ba.
I Hence b L c R a, so b J a.

I Here, every H-class is trivial.

I In this example, we see that R and L commute, and J = R ◦ L = L ◦ R.
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Another example
I u R v if uM = vM,
I u L v if Mu = Mv ,
I u J v if MuM = MvM,
I H= R∩ L.

1 2 3

b, c a a, c

a

c b

b

∗ 1 b

∗ a ab cb abcb ∗ c abc
∗ bab ba ∗ bcb babcb bc babc

∗ cbab ∗ cba ∗ cbc

I Here, nontrivial H-classes.
I An H-class containing an

idempotent ∗ is a group.
I H is a group, or HH ∩ H = ∅
I All H-classes from same J -class

are isomorphic.
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Basic but important properties
I H ⊆ R,L ⊆ J .
I R is a left congruence, L is a right congruence.

I One can also consider the associated preorders. For instance:
I s 6J t if MsM ⊆ MtM (we say that s, t are J -comparable).
I s <J t if s 6J t and s 6J t.

An important property
In a finite monoid, J = R ◦ L = L ◦ R.

Proof of J= R ◦ L
⊇ If u (R ◦ L) v , there is w st. u R w L v so u J w J v .
⊆ If u J v , then (u = xvt) ∧ (v = yuz). Let w = uz

u = (xy)u(zt) = (xy)ωu(zt)ω = u(zt)ω 6R uz 6R u.

Hence u R w and symmetrically w L v .

I With same arguments: J -equivalent and R-comparable implies R-equivalent.
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Logics
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First Order Logic FO(<)

Syntax: FOA(<)

ϕ ::= ⊥ | a(x) | ¬ϕ | ϕ ∨ ϕ | x 6 y | ∃xϕ (a ∈ A, x , y ∈ Var)

Semantics
I A formula is evaluated on a word w ∈ A∗.
I σ : Var→ pos(w) = {1, 2, . . . , |w |} is a interpretation of (free) variables.
I < interpreted as the usual ordering between positions.

t, σ |= a(x) if wσ(x) = a
t, σ |= ¬ϕ if t, σ 6|= ϕ

t, σ |= ϕ ∨ ψ if t, σ |= ϕ ∨ t, σ |= ψ

t, σ |= x 6 y if σ(x) 6 σ(y)

t, σ |= ∃xϕ if ∃v ∈ V : t, {σ ∪ [x 7→ v ]} |= ϕ

Macros
∀xϕ : ¬∃x¬ϕ ϕ ∧ ψ : ¬(¬ϕ ∨ ¬ψ) ϕ⇒ ψ : ψ ∨ ¬ϕ ϕ⇔ ψ . . .

A sentence ϕ ∈ FO(<) defines the language L(ϕ) = {w | w |= ϕ} ⊆ A∗.
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First Order Logic — Examples

Examples of FO(<) formulas
I ϕ = ∀x(a(x) ∨ b(x)) ∧ ∀y∀z (z = y + 1)⇒ [a(y)⇔ b(z)]

bababababa |= ϕ

abaabaabaaba 6|= ϕ

I y = x + 1 def
= (x < y) ∧ (¬∃z , x < z < y).

Conversely, < is not expressible in FO(+1) [Th82]. How to prove it?
I first(x)

def
= ¬∃z , z < x .

I (min ⊆ B)
def
=
∨

b∈B ∃x [b(x) ∧ first(x)].
I L(ϕ ∧ first = {a} ∧ last = {b}) = (ab)+.
I Hence, (ab)+ is expressible in FO(<). How to automatically get a formula?
I The language (aa)+ cannot be expressed in FO(<)! How to prove it?

21/49



First Order Logic — Examples

Examples of FO(<) formulas
I ϕ = ∀x(a(x) ∨ b(x)) ∧ ∀y∀z (z = y + 1)⇒ [a(y)⇔ b(z)]

bababababa |= ϕ

abaabaabaaba 6|= ϕ

I y = x + 1 def
= (x < y) ∧ (¬∃z , x < z < y).

Conversely, < is not expressible in FO(+1) [Th82]. How to prove it?
I first(x)

def
= ¬∃z , z < x .

I (min ⊆ B)
def
=
∨

b∈B ∃x [b(x) ∧ first(x)].

I L(ϕ ∧ first = {a} ∧ last = {b}) = (ab)+.
I Hence, (ab)+ is expressible in FO(<). How to automatically get a formula?
I The language (aa)+ cannot be expressed in FO(<)! How to prove it?

21/49



First Order Logic — Examples

Examples of FO(<) formulas
I ϕ = ∀x(a(x) ∨ b(x)) ∧ ∀y∀z (z = y + 1)⇒ [a(y)⇔ b(z)]

bababababa |= ϕ

abaabaabaaba 6|= ϕ

I y = x + 1 def
= (x < y) ∧ (¬∃z , x < z < y).

Conversely, < is not expressible in FO(+1) [Th82]. How to prove it?
I first(x)

def
= ¬∃z , z < x .

I (min ⊆ B)
def
=
∨

b∈B ∃x [b(x) ∧ first(x)].
I L(ϕ ∧ first = {a} ∧ last = {b}) = (ab)+.
I Hence, (ab)+ is expressible in FO(<). How to automatically get a formula?
I The language (aa)+ cannot be expressed in FO(<)! How to prove it?

21/49



Linear Temporal Logic LTL (Pnueli 1977)

Syntax: LTL(A,X,U)

ϕ ::= ⊥ | a | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ

Semantics: w ∈ A∗ and i ∈ pos(w)

w , i |= a if wi = a
w , i |= ¬ϕ if w , i 6|= ϕ

w , i |= ϕ ∨ ψ if w , i |= ϕ ∨ w , i |= ψ

w , i |= Xϕ if w , i + 1 |= ϕ

w , i |= ϕ U ψ if ∃k. i 6 k ∧ w , k |= ψ ∧ ∀j . (i 6 j < k)⇒ w , j |= ϕ

Example

ϕ ∈ LTL(A,X,U) defines the language L(ϕ) = {w | w , 1 |= ϕ}.
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Useful LTL Macros

Macros
I Fϕ = > U ϕ (eventually).
I Gϕ = ¬F¬ϕ (always in the future).

Example
Fϕ

· · ·
ϕ

· · ·

Gϕ

ϕ ϕ
· · ·

ϕ ϕ ϕ
· · ·

23/49



Examples of LTL properties

Some languages definable in LTL
I F a defines the language A∗aA∗.

I G a defines the language a+.

I (ab)+ is also definable: G(a ∨ b) ∧ a ∧ F(b ∧ ¬X>) ∧ G(a↔ ¬Xb)

I Can (aa)+ be defined in LTL? It does not seem so, but how to prove it?

I On A∗, LTL formulas can be easily translated in FO(<) formulas.

I Does the converse hold? Difficult because LTL only handles one free variable.

Syntactic monoids help!
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Expressiveness results
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FO with one variable

FO1(<) = where only one variable name is allowed.

Example: FO with one variable
The following conditions are equivalent:
1. L is definable by an FO1(<) sentence.
2. L is a boolean combination of languages of the form A∗aA∗.
3. The syntactic monoid of L is idempotent and commutative:

∀s, t ∈ M(L), s = s2 and st = ts.
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Typical idempotent commutative monoid

I (2A,∪,∅).
I Hasse diagram of representation in J -classes:

1

∗a ∗b
∗c

∗ab
∗ac ∗bc

∗abc
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FO with one variable

Example: FO with one variable
The following conditions are equivalent:
1. L is definable by an FO1 sentence.
2. L is a boolean combination of languages of the form A∗aA∗.
3. The syntactic monoid of L is idempotent and commutative:

∀s, t ∈ M(L), s = s2 and st = ts.

Proof of 1⇒ 2
I In FO1, binary symbol < is useless: x 6 x ≡ >.
I Every formula equivalent to ∃xϕ(x), with ϕ quantifier-free.
I Get rid of negation in atoms: ¬b(x) ≡

∨
b 6=a a(x). If a 6= b: a(x) ∧ b(x) ≡ ⊥.

I Hence
∧

b∈B b(x) ∧
∧

c∈C ¬c(x) reduce to a single predicate a(x) or ⊥,
I ∃x .(a(x) ∨ b(x)) ≡ ∃x .a(x) ∨ ∃x .b(x)  reduce to boolean combination

of formulas ϕ = ∃x .a(x).
I L(∃x .a(x)) = A∗aA∗.
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Example: FO with one variable
The following conditions are equivalent:
1. L is definable by an FO1 sentence.
2. L is a boolean combination of languages of the form A∗aA∗.
3. The syntactic monoid of L is idempotent and commutative:

∀s, t ∈ M(L), s = s2 and st = ts.

Proof of 2⇒ 3
I The syntactic monoid M(A∗aA∗) = {1, a} is idempotent and commutative.
I Idempotency and commutativity are inherited by boolean combinations.
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FO with one variable

Example: FO with one variable
The following conditions are equivalent:
1. L is definable by an FO1 sentence.
2. L is a boolean combination of languages of the form A∗aA∗.
3. The syntactic monoid of L is idempotent and commutative:

∀s, t ∈ M(L), s = s2 and st = ts.

Proof of 3⇒ 2
I Let ϕ : A∗ → M recognizing L, with M idempotent and commutative.
I L =

⋃
s∈ϕ(L) ϕ

−1(s) enough to show ϕ−1(s) ∈ Bool({A∗aA∗ | a ∈ A}).
I Since M idempotent commutative: alph(u) = alph(v)⇒ ϕ(u) = ϕ(v).
I Let [alph = B] be the set of words of alphabet exactly B.
I ϕ−1(s) =

⋃
B∈As

[alph = B] for As = {B ⊆ A | ∃u ∈ ϕ−1(s), alph(u) = B}.
I [alph = B] =

⋂
b∈B A∗bA∗ \

⋃
c /∈B A∗cA∗.
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Piecewise testable languages

I For u = a1 · · · an with ai ∈ A, let

L(u) = A∗a1A∗a2 · · ·A∗anA∗.

L(u) is the set of all words having u as a (scattered) subword.
I Write u v v if v ∈ L(u): u is a (scattered) subword of v .
I Piecewise testable language: boolean combination of languages L(u), u ∈ A∗.
I Examples:

I B∗ = A∗ \
⋃

c /∈B A∗cA∗

I (alph = B) =
⋂

b∈B A∗bA∗ \
⋃

c /∈B A∗cA∗

I Questions: how to decide whether a language is piecewise testable?
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BΣ1(<) fragment of FO(<)

I Piecewise testable languages have a logical characterization.
I BΣ1(<): fragment of FO(<) consisting of Boolean closure of formulas of the

form
∃x1 . . . ∃xkϕ(x1, . . . , xk)

with ϕ quantifier-free.

I Clearly BΣ1(<) can express piecewise testability:

A∗a1A∗a2 · · ·A∗anA∗ = L(∃x1 . . . ∃xn ∧
∧

(xi < xi+1) ∧ ai (xi )).

I Conversely, using disjunctive normal form and ∃~x
∨

i ϕi ≡
∨

i ∃~xϕi , one can
start from ∃~xϕ where ϕ is a conjunction of atoms.

I One can get rid of negative atoms.
I Therefore, ϕ fixes conditions on the order of xi ’s and their labels.
I This defines a piecewise testable language.
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Simon’s theorem for piecewise testable languages

Piecewise testable languages, BΣ1, J -trivial monoids (Simon-Thomas)
The following conditions are equivalent.
1. L is BΣ1(<) definable.
2. L is piecewise testable.
3. M(L) is finite and J -trivial.

Recall: J -trivial means u J v ⇒ u = v .

Corollary
BΣ1(<) definability is decidable.

Example: (ab)+ is not piecewise testable (on any alphabet containing {a, b}).
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Simon’s theorem for piecewise testable languages: proof (1)
I Note that L(u) is the set of words having u as a (scattered) subword.
I Define u ∼k v if u and v have the same (scattered) subwords of length 6 k .

Example: abba ∼2 baba 6∼2 aabb.

I ∼k ⊆ A∗ × A∗ is a congruence of finite index (at most |2A6k | classes).

TFAE:

1. L is piecewise testable.

2. There exists k > 0 such that ∼k ⊆ ∼L.
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Proof of 1⇒ 2

I L =
⋃(⋂

L(ui ) ∩
⋂

(A∗ \ L(vj))
)
. (Finite union and intersections).

I Let k = max{|ui |, |vj |}.
I If u ∼k v , then xuy ∼k xvy for all x , y .
I So by def. of k , xuy , xvy belong to the same languages L(ui ), L(vj).
I Hence xuy ∈ L iff xvy ∈ L, therefore u ∼L v .
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I ∼k ⊆ A∗ × A∗ is a congruence of finite index (at most |2A6k | classes).

TFAE:

1. L is piecewise testable.

2. There exists k > 0 such that ∼k ⊆ ∼L.

Proof of 2⇒ 1
I L = η−1L (ηL(L)) =

⋃
s∈ηL(L) η

−1
L (s) is a union of ∼L-classes.

I If ∼k ⊆ ∼L, then L is a (finite) union of ∼k -classes.
I Enough to show that any ∼k -class is piecewise testable.
I The ∼k class of a word u is

⋂
wvu,|w |6k

L(w) ∩
⋂

w 6vu,|w |6k

A∗ \ L(w).
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Simon’s theorem for piecewise testable languages: proof (2)

Proof of: L is piecewise testable =⇒ M(L) is J -trivial.
I Write u = ηL(u) where ηL : A∗ → M(L) is the syntactic morphism.
I Assume u J v . We want u = v .

I By definition of J : u = xvt and v = yuz . Hence u = xyuzt = (xy)nu(zt)n.
I Let k be such that ∼k ⊆ ∼L.
I Let n be such that (xy)nu(zt)n ∼k (xy)n+1u(zt)n+1.
I Therefore, (xy)nu(zt)n ∼k y(xy)nu(zt)nz
I Since ∼k ⊆ ∼L, we get u = (xy)nu(zt)n = y(xy)nu(zt)nz = v .
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I Write u = ηL(u) where ηL : A∗ → M(L) is the syntactic morphism.
I Assume u J v . We want u = v .
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Simon’s theorem for piecewise testable languages: proof (3)

I Recall that s 6J t if s = xty for some x , y ∈ M.
I Note that if M(L) is J -trivial, then 6J is a partial order on M(L).
I By definition of 6J , multiplying an element yields an element

I either equal to the original one,
I or strictly smaller.
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Simon’s theorem for piecewise testable languages: proof (4)

M(L) J -trivial =⇒ L piecewise testable: Proof of O. Klima (1)
I Let m = size of largest <J -chain, and k = 2m − 2. One shows ∼k ⊆ ∼L.
I Let u ∼k v with u = u(1) · · · u(p) and v = v(1) · · · v(q).
I u[`1, . . . , `k ]

def
= word made of letters at positions {`1, . . . , `k} from left to right

I For i 6 j u[i • j ] def
= u[i , i + 1, . . . , j ].
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def
= word made of letters at positions {`1, . . . , `k} from left to right

I For i 6 j u[i • j ] def
= u[i , i + 1, . . . , j ].

I Position i in u is blue if u[1 • (i − 1)]·u(i) <J u[1 • (i − 1)].
I At most m − 1 blue positions i1 < · · · < ir in u.

i1

i2
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Simon’s theorem for piecewise testable languages: proof (4)

M(L) J -trivial =⇒ L piecewise testable: Proof of O. Klima (2)

i1

i2

I Claim1: any subword of u containing all blue positions is ∼L-equvalent to u.
Indeed for instance, by definition of blue indices, for any i` < i < i`+1

u[1 • i`] = u[1 • (i − 1)] = u[1 • i ]
=⇒ u[1 • i`]u(i) = u[1 • i`]

This is where the hypothesis M(L) is J -trivial is used.
I For same reason: i1 < · · · < ir carries leftmost occurrence of u[i1 • ir ].
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I Dually, position j in v is red if v [j − 1, q] >J v(j)v [j − 1, q].
I At most m − 1 red positions j1 < · · · < js in v .
I Corresponding red rightmost positions in u: j̃1, . . . , j̃s .
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I The blue (red) positions carry the same word in u and v .
I The way they are shuffled in u and v only depends on (small) subwords.
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I The blue (red) positions carry the same word in u and v .
I The way they are shuffled in u and v only depends on (small) subwords.

I Consider in u a blue index ih and a red one j̃`, with for simplicity u(ih) 6= u(̃j`).

ih < j̃` ⇔ u(i1) · · · u(ih)u(̃j`) · · · u(̃js) v u

⇔ v(ĩ1) · · · v(ĩh)v(j`) · · · v(js) v v

⇔ ĩh < j`
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Simon’s theorem for piecewise testable languages: proof (4)

M(L) J -trivial =⇒ L piecewise testable: Proof of O. Klima (3)
I Claim1: any subword of u containing all blue positions is ∼L-equvalent to u.
I Claim2: u[i1, . . . , ir , j̃1, . . . , j̃s ] = v [̃i1, . . . , ĩr , j1, . . . , js ]

I Hence
u ∼L u[i1, . . . , ir , j̃1, . . . , j̃s ] = v [̃i1, . . . , ĩr , j1, . . . , js ] ∼L v

that is
u ∼L v .
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Star-free languages

I Star-free languages: built from ∅ and letters using finitely many times
boolean operations and product.
1. ∅ ∈ SF(A∗) and {a} ∈ SF(A∗),
2. K , L ∈ SF(A∗)⇒ K ∪ L ∈ SF(A∗),
3. K , L ∈ SF(A∗)⇒ A∗ \ K ∈ SF(A∗),
4. K , L ∈ SF(A∗)⇒ KL ∈ SF(A∗).

I Examples of star-free languages:
I A∗ = A∗ \∅,
I Finite languages,
I Piecewise testable languages,
I B∗ = A∗ \

⋃
c /∈B A∗cA∗,

I (ab)+ = aA∗ ∩ A∗b ∩ (A∗ \ A∗(aa ∪ bb)A∗)
This is not piecewise testable, because the syntactic monoid is not J -trivial.

I Star-free languages are regular, but (aa)∗ is not star-free. How to prove it?
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Aperiodic monoids

I A finite monoid is aperiodic if it has only trivial subgroups, or equivalently:

∃n,∀s ∈ M, sn = sn+1

or equivalently again
∀s ∈ M, sω = sω+1

I A language is aperiodic if it is recognized by a finite aperiodic monoid.
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The Schützenberger-Kamp-McNaughton-Papert theorem

Theorem Schützenberger-Kamp-McNaughton-Papert
For a word language L ⊆ A∗, TFAE
1. L can be expressed in FO(<).
2. L can be expressed in FO3(<).
3. L can be expressed in LTL with past operators.
4. L can be expressed in pure future LTL.
5. L is star-free.
6. L is aperiodic.
7. L is recognizable and its minimal automaton is counter-free: no loop

q u−→ p u−→ · · · u−→ q with u ∈ A+ and p 6= q.

I A pool of difficult results.
I Elegant proof of Th. Wilke for 4⇐⇒ 6, refined by Diekert, Gastin, Kufleitner.
I 6 =⇒ decidable! Complexity of 7 : PSPACE-complete (J. Stern).
I Some implications are trivial. Eg. 4⇒ 3⇒ 2⇒ 1, or 6⇔ 7.
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Example: L = (ab)+

I Counter-free (sink ommitted):

1 2 3
a

b

a

I M(L) has 6 elements {1, a, b, a2, ab, ba} and s2 = s3 for all s ∈ M.
I Star-free (ab)+ = aA∗ ∩ A∗b ∩ (A∗ \ A∗(aa ∪ bb)A∗).
I FO(<) and FO3(<) ∀x (a(x) ∨ b(x)) ∧

∀y∀z (z = y + 1)⇒ [a(y)⇔ b(z)] ∧
first = {a} ∧ last = {b}.

I LTL: G(a ∨ b) ∧ a ∧ F(b ∧ ¬X>) ∧ G(a↔ ¬Xb)
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From Star-free to Aperiodic (easy)

Lemma: Star-free are aperiodic
Any star-free language is aperiodic.

In particular, (aa)+ is not aperiodic.

Proof Induction on L ∈ SF(A∗): find i(L) such that

∀u ∈ A∗, ui(L) ∼L ui(L)+1.

I i(∅) = 0 and i(a) = 2.
I i(A∗ \ L) = i(L),
I i(K ∪ L) = max(i(K ), i(L)),
I i(KL) = i(K ) + i(L): if w = xui(K)+i(L)y ∈ KL, then

I either xui(K)y ′ ∈ K for some prefix of xui(K)y ′ of w , whence xui(K)+1y ′ ∈ K .
Therefore xui(K)+i(L)+1y ∈ KL,

I or symmetric case.
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From Aperiodic to Star-free (difficult)

Original intuition of the proof from Th. Wilke.
Also works from aperiodic to LTL.

I See M as a transformation monoid, acting on set Q = M of states.
I Induction on (|M|, |A|) ordered lexicographically.
I Either all letters induce identity on Q: easy.
I Or some letter a does not act surjectively on Q. [Aperiodicity used here].
I In this case, decompose element on M as u1au2a · · · aun.

I The initial and final segments u1, un are on a smaller alphabet.
I The intermediate segments use less states.
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Tool for Induction (Aperiodic to Star-free)

I Suitable construction for the induction [Diekert, Gastin]
I For m ∈ M, define a new internal composition on the set mM ∩Mm:

xm ◦my = xmy .

I One can check that this is a well-defined product.
I We have mx ◦my = mxy , hence

I (mM ∩Mm, ◦,m) is a monoid.
I If M is aperiodic, then so is (mM ∩Mm, ◦,m).
I If M is aperiodic and m 6= 1, then |mM ∩Mm| < |M|.

Since in this case 1 /∈ mM: ms = 1⇒ mωsω = 1⇒ m.(mωsω) = 1⇒ m = 1.
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From Aperiodic to Star-free (1)

Proof of V. Diekert, M. Kufleitner (adapted from Th. Wilke)
I Fix α : A∗ → M aperiodic and let L = α−1(α(L)) =

⋃
s∈α(L) α

−1(s).
I Induction on (|M|, |A|) ordered lexicographically.
I Enough to show that α−1(s) is star-free.
I Assume first s = 1. Then: α−1(1) = {a ∈ A | α(a) = 1}∗, hence star-free.

Indeed, uv = 1⇒ u = v = 1.
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From Aperiodic to Star-free (2)

Proof of V. Diekert, M. Kufleitner (adapted from Th. Wilke)
I Assume now s 6= 1.
I If α(u) = s, then u contains a letter a such that α(a) 6= 1. Let a = α(a).
I Let B = A \ {a}, B = α(B∗) and β : B∗ → B be the restriction of α to B∗.
I B is a submonoid of M (and will be considered as an alphabet, too).

I u = u1au2au3 with a /∈ alph(u1u3) yields

α−1(s) =
⋃

a∈A,α(a)6=1

⋃
s=s1s2s3

β−1(s1) · (α−1(s2) ∩ aA∗ ∩ A∗a) · β−1(s3)

I By induction hypothesis, we have β−1(si ) star-free (|B| 6 |M| and |B| < |A|).
I Therefore we are left to show α−1(s) ∩ aA∗ ∩ A∗a is star-free.
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From Aperiodic to Star-free (3)

Proof of V. Diekert, M. Kufleitner (adapted from Th. Wilke)
I Let us show that α−1(s) ∩ aA∗ ∩ A∗a is star-free.
I Let B∗ be the free monoid over alphabet B = α(B∗) (could have |B| > |A|).

I “Decompose” α as aA∗ σ−−−−−→ B∗
γ−−−−→ (aM ∩Ma, ◦, a), as follows.

I σ(au1au2 · · · aun) = β(u1) · β(u2) · · ·β(un). Erase a
I γ morphism defined, for b ∈ B, by γ(b) = aba. Reintroduce it morphically!

I Almost a factorization of α.

α−1(s) ∩ aA∗ ∩ A∗a = σ−1(γ−1(s)).a

I Since |aM ∩Ma| < |M|, we get γ−1(s) ∈ SF(B∗).
I It remains to show that σ−1 preserves star-freeness.

I For a one-letter word b ∈ B, it holds σ−1(b) = aβ−1(b): use |B| < |A|.
I SF operators commute with σ−1, eg., σ−1(K ∪ L) = σ−1(K) ∪ σ−1(L).
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Summary

I Many classes of regular languages have an algebraic characterization.
I General framework given in Eilenberg-Reiterman theorem.
I Variety of regular languages V : A 7→ A∗V, closed under

I boolean combinations,
I inverse image by homomorphisms ϕ : A∗ → B∗,
I quotients L 7→ a−1L, L 7→ La−1.

I Variety of finite monoids: class closed under (M,N) 7→ M × N and division.
I Eilenberg’s theorem: Bijective correspondence between varieties of regular

languages and varieties of monoids.
I Reiterman’s theorem: Equational definition of varieties.
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Extensions

I To other classes than varieties
I Drop complement: Positive varieties (Pin)
I Drop closure under quotients (Pippenberg)
I Drop both (Polák)
I General framework: duality (Gehrke, Grigorieff, Pin): definition by

(in)equations/identities.
I To other structures, like infinite words, Mazurkiewicz traces, trees.
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Questions?
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