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Motivation

» Word languages are used in computer science for many purposes.
» Natural models for

> (text) programs,

> inputs of programs,

» behaviors of programs,
> etc.

» Several formalisms to define regular sets of words: logics, regexp, automata. . .

How to compare their expressive power?

The talk shows examples exploiting connections with algebra to answer this
question.

Algebraic

Tools
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Motivation: some examples

» Main question in this talk: expressiveness.
Typical questions:
» Compare the expressive power of logic £1 and logic £,.

» Is temporal logic with past and future operators more expressive than pure
future temporal logic?
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Motivation: some examples

» Main question in this talk: expressiveness.
Typical questions:
» Compare the expressive power of logic £1 and logic £,.

v

Is temporal logic with past and future operators more expressive than pure
future temporal logic?

Is temporal logic with only unary operators weaker?
Are FO(<) and LTL on words equally expressive?

Is a given regular language L expressible in first-order logic?

vV v v v

A polynomial is a language of the form (J, ... B3a1By - - - akBj.

Given a regular language L, is it decidable if
» L is a polynomial?
» L is a finite boolean combination of polynomials?
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Link between logic and algebra for regular languages

» A language L C A* is recognized by a monoid M if there is a morphism
@ A* = M such that

L= (e(L))

> In other words: it is enough to look at ¢ image to decide membership to L.

Thm. Kleene-Biichi

For a language L C A*, it is equivalent
> to be recognized by a finite automaton,
» to be definable by a regular expression,
» to be definable in Monadic Second Order logic,

» to be recognized by a finite monoid.
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Regular languages and monoids

High-level

Language L, Regular exp ab* desertisiton

i

“Easy” | |Harder

Y

Low-level
description

Ry
oy

Minimal automaton Amin(L)
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Regular languages and monoids

Language L, Regular exp ab* dilsgc};i;l)et\i/s:l
]
0 1 2 -
Syntactic monoid M(L) S 1T272 {e,a,b,a°} Algebra
(finite, [K56]) ab=a,ba= 2% | ~ algorithms
b 2 1 2 b2 — b L J

Y

b
Minimal automaton Amin(L) Qne d';ig}':t\?zln
b

Ry
oy
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High-level vs. algebraic properties: prominent results

6/49

Logical
Language L Amin(L) Synt(L) defingability
Star-free Counter-free A FO(<),LTL
[Sch65,McN-P71,K68]
Piecewise testable Very weak + ... J Bool(X1)
[S75,Th87]
¢ I 1 non ambiguous 2-way part. ord. DA E?'QL(;) AN
s &2 2
[Sch76,SchThV01, ThW98,EVW97,PW97]
Loc. threshold testable | Forbidden patterns | ACom x LI FO(+1)

[s85, Thwas,BP89)]




Some tools

» Syntactic monoid of a regular language.
» Monoid structure, in terms of ideals.

» Basic and more advanced pumping arguments.
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Outline

Motivation

Regular languages and monoids
Syntactic monoids

Background on finite monoids
Idempotents
Green's relations

Logics
First order logic
LTL

Expressiveness results
FO with one variable
Piecewise testable languages
First-order logic, star-free languages and aperiodic monoids

Summary
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Syntactic monoids

» Notation: Monoid (M, -, 1), with - associative, 1 neutral.

» A* free monoid over A.

» Morphism ¢ : M — N.

» If L C A*, its syntactic congruence ~; C A* x A* is defined by

un~ypviff Vx,y € xuy € L < xvy € L.

v

It is indeed a congruence: equivalence relation compatible with concatenation.

ur~pv = [x(uw)y € Lo x(vw)y € L] = uw ~p vw

v

Syntactic monoid M(L) = A*/~ and syntactic morphism 7, : A* — M(L).

A language is regular if and only if its syntactic congruence has finite index.
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Syntactic monoids
» Say that M; divides M, if M; is a quotient of a submonoid of M,.

Syntactic monoid and recognition

Monoids recognizing L are exactly those which are divided by M(L).
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Syntactic monoids
» Say that M; divides M, if M; is a quotient of a submonoid of M,.

Syntactic monoid and recognition

Monoids recognizing L are exactly those which are divided by M(L).

» 1. recognizes L since i, ' (n.(L)) = L:

ue n[l(nL(L)) = n(u)en(l) = Ivelbu~v = vel

> If M(L) divides M:
« one-to-one

M
? lﬂ surj.
A* TM(L)

Then « o ¢ recognizes L.
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Syntactic monoids
» Say that M; divides M, if M; is a quotient of a submonoid of M,.

Syntactic monoid and recognition
Monoids recognizing L are exactly those which are divided by M(L).

» 1. recognizes L since i, ' (n.(L)) = L:

ven (L) = mu)en(l) = Ivelu~ v = vuelL

> If M(L) divides M:
« one-to-one

M
? lﬂ surj.
A* TM(L)

Then « o ¢ recognizes L.
» Conversely, if ¢ : A* — M recognizes L, then p(u) = ¢(v) implies u ~; v.
Therefore there is a surjective morphism 5 from p(A*) into M(L).
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Syntactic monoids

» M(L) is the monoid of transitions of the minimal automaton of L.
Each word induces a mapping @ — Q (hence |[M(L)| < Q%).
= Algorithm to compute M(L) (see Example next slide).
> In particular, we have M(A*\ L) = M(L)

11/49



Syntactic monoids
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M(L) is the monoid of transitions of the minimal automaton of L.
Each word induces a mapping Q — Q (hence [M(L)| < Q%).
= Algorithm to compute M(L) (see Example next slide).
In particular, we have M(A*\ L) = M(L)
M(Ly N Ly) and M(Ly U Ly) divide M(Ly) x M(Ly).
Consequence: properties defined by identities are preserved through boolean
combinations.
For instance, if M(L;) and M(L;) are commutative, then so are

> M(Ll N Lz),
> M(L]_ @] Lz)
> M(Ll \ Lz).



Syntactic monoid: example
» Example: let A= {a, b,c} and L = A*abA*.
» The minimal automaton of L is the following:

b, c

Generators
112

w W wlw

212
b|1]3
1)1

Relations
aa=a=ca, ac=cb=cc=c

bb=b=bc, ab=bab=0

12/49

3 a, b, c

Elements

1

* 1
x a
x b
% C
x ab
ba

N W= = N =

W WL W N NN

W W W w w ww




Background on finite
monoids



|dempotents in monoids

» An idempotent is an element e € M such that e = ee.

» Any m € M has a single power which is idempotent, denoted m*“.

> Since the loop has at most |M| elements, m!MI' = m~.
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|deal theory of monoids: Green's relations

» Automata exhibit some structure: graph representation, strongly connected
components, DAG of scc, etc.

» One can extract such kind of information also out of a monoid M.
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|deal theory of monoids: Green's relations
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Automata exhibit some structure: graph representation, strongly connected
components, DAG of scc, etc.

One can extract such kind of information also out of a monoid M.
The right action of M on itself yields a labeled graph R(M).

Strongly connected components of R(M) are called R-classes.

Formally, v and v are R-equivalent, written v R v if

1. There exists x € M such that v = ux, and
2. There exists y € M such that u = vy.

Or equivalently, if uM = vM: u and v generate the same right ideal.



Green's relations
» uRvif uM=vM,
» u L vif Mu= Mv,
» uJ vif MuM = MvM,
» H=RNL.
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Green's relations

» uRvif uM=vM

» u L vif Mu= Mv,

» uJ vif MuM = MvM,
» H=RNL.
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Green's relations

» uRvif uM=vM

» u L vif Mu= Mv,

» uJ v if MuM = MvM,
» H=RNL.

ba b

ab
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Green's relations {a, b, c}*ab{a, b, c}*

» uRvif uM = vM, a,b,c
» u L vif Mu= Mv,
» uJ v if MuM = MvM,
» H=RNL.
*q > (ca=a)A(ac=c)=aRc.
* *
a c
ba |“b

ab
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Green's relations {a, b, c}*ab{a, b, c}*

» uRvif uM = vM, a,b,c
» u L vif Mu= Mv,
» uJ v if MuM = MvM,
» H=RNL.
*1 » (ca=a)A(ac=c)=aRec.
> (ba=ba)A(cha=2a)= a L ba.
*a [*e » Hence bLcR a, so b J a.
ba |*b

ab
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Green's relations {a, b, c}*ab{a, b, c}*
» uRvif uM = vM, a,b,c

» u L vif Mu= Mv,
> uJ vif MuM = MvM,
» H=RNL.

*1 » (ca=a)A(ac=c)=aRec.
> (ba = ba)A(cha=a)= aL ba.
*a |%c > Hence bLcR a, sobJ a.
ba |“b » Here, every H-class is trivial.

ab
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Green's relations {a, b, c}*ab{a, b, c}*
» uRvif uM = vM, a,b,c

» u L vif Mu= Mv,
» uJ v if MuM = MvM,
» H=RNL.

1 > (ca=a)A(ac=c)=aRec.
> (ba=ba)A(cha=2a)= a L ba.
*a |fe » Hence bLcR a, so b J a.
ba b » Here, every H-class is trivial.
*ab

» In this example, we see that R and £ commute, and 7 = Ro L =LoR.
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Another example

» uRvif uM = vM,

» u L vif Mu= Mv,

» uJ vif MuM = MvM,
» H=RNL.
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Another example

» uRvif uM = vM,
» u L vif Mu= Mv,
» uJ v if MuM = MvM,

» H=RNL.
3 1 b » Here, nontrivial H-classes.
» An H-class containing an
idempotent x* is a group.
*a ab| cb abech |Tc  abc » Hisagroup,or HHNH =g
*bab bal*beb babch!| bce babe > All H-classes from same J-class

are isomorphic.

* cbab | * cba |* cbe
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Basic but important properties

» HCR,LCJT.
> R is a left congruence, L is a right congruence.
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» HCR,LCJ.
» R is a left congruence, L is a right congruence.

» One can also consider the associated preorders. For instance:
» s<g tif MsM C MtM (we say that s, t are J-comparable).
» s<gtifs<ytands Jt.
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» One can also consider the associated preorders. For instance:
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» s<gtifs<ytands Jt.

An important property
In a finite monoid, 7 = Ro L =LoR.

Proof of 7=Ro L
O lfu(RoL)v, thereiswst. uRwLvsouJ wJ v.
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u=(xy)u(zt) = (xy)“u(zt)” = u(zt)” <r vz < u.

Hence u R w and symmetrically w L v.
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Basic but important properties
» HCR,LCJ.

> R is a left congruence, L is a right congruence.

» One can also consider the associated preorders. For instance:
» s<g tif MsM C MtM (we say that s, t are J-comparable).
» s<gtifs<ytands Jt.

An important property
In a finite monoid, 7 = Ro L =LoR.

Proof of 7=Ro L
O lfu(RoL)v, thereiswst. uRwLvsouJ wJ v.
C If uJ v, then (u= xvt) A (v = yuz). Let w = uz

u=(xy)u(zt) = (xy)“u(zt)” = u(zt)” <r vz < u.

Hence u R w and symmetrically w L v.

y

» With same arguments: J-equivalent and R-comparable implies R-equivalent.
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Logics



First Order Logic FO(<)
Syntax: FOA(<)

pr=L1]alx) |—p|leVe|x<y|Ixp (a€ A x,y € Var)

Semantics

» A formula is evaluated on a word w € A*.

> o : Var — pos(w) = {1,2,...,|w|} is a interpretation of (free) variables.

» < interpreted as the usual ordering between positions.
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First Order Logic FO(<)
Syntax: FOA(<)

pu=lalx) |~¢e|leVe|x<y|Ixe (2 € A x,y € Var)

Semantics

» A formula is evaluated on a word w € A*.

> o : Var — pos(w) = {1,2,...,|w|} is a interpretation of (free) variables.

» < interpreted as the usual ordering between positions.

t,o | a(x) if Wy =a
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First Order Logic FO(<)
Syntax: FOA(<)

pu=Ll]alx) |—p|leVe|x<y|Ixp (a€ A x,y € Var)

Semantics

» A formula is evaluated on a word w € A*.

> o : Var — pos(w) = {1,2,...,|w|} is a interpretation of (free) variables.
» < interpreted as the usual ordering between positions.

tolalx) if wg=a

t,o = if ol

t,toEpVy if toEe V toEY
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First Order Logic FO(<)
Syntax: FOA(<)

pu=Llalx) |~@leVe|x<y|Ixp (a€ A x,y € Var)

Semantics

» A formula is evaluated on a word w € A*.
> o : Var — pos(w) = {1,2,...,|w|} is a interpretation of (free) variables.
» < interpreted as the usual ordering between positions.

t,o E a(x) if Wy =a

t,o = —p it topEoe

t,oEpVYy if toEe V t,oEY

ttoEx<y if o(x)<a(y)
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First Order Logic FO(<)
Syntax: FOA(<)

pu=Llalx) |~@leVe|x<y|Ixp (a€ A x,y € Var)

Semantics

» A formula is evaluated on a word w € A*.
» o : Var — pos(w) = {1,2,...,|w|} is a interpretation of (free) variables.
» < interpreted as the usual ordering between positions.

t,o '= a(x) if Wo(x) = 4

t,o = —p it topEoe

t,oEpVYy if toEe V t,oEY

ttoEx<y if o(x)<o(y)

t,o = Ixe it IveV:t{oUx—Vv]}Ee
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First Order Logic FO(<)
Syntax: FOA(<)

pr=L1]alx) |—p|leVe|x<y|Ixp (a€ A x,y € Var)

Semantics

» A formula is evaluated on a word w € A*.

» o : Var — pos(w) = {1,2,...,|w|} is a interpretation of (free) variables.
» < interpreted as the usual ordering between positions.

t,o '= a(x) if Wo(x) = 4

t,o = —p it topEoe

t,oEpVYy if toEe V t,oEY

ttoEx<y if o(x)<o(y)

t,o = Ixp it IveV:t{oUx—Vv]}Ee

Vxp : mdx—p ©AY (V) p=1:9YV-p pep...
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First Order Logic FO(<)
Syntax: FOA(<)

pr=L1]alx) |—p|leVe|x<y|Ixp (a€ A x,y € Var)

Semantics

» A formula is evaluated on a word w € A*.
» o : Var — pos(w) = {1,2,...,|w|} is a interpretation of (free) variables.
» < interpreted as the usual ordering between positions.

t,o '= a(x) if Wo(x) = 4

t,o = —p it topEoe

t,oEpVYy if toEe V t,oEY

ttoEx<y if o(x)<o(y)

t,o = Ixp it IveV:t{oUx—Vv]}Ee

Vxp:—dx—p AP :ia(-eV ) e=YiYVop oo ...
A sentence ¢ € FO(<) defines the language L(¢) = {w | w | ¢} C A*.
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First Order Logic — Examples

Examples of FO(<) formulas

> o =Vx(a(x) V b(x)) AVyVz(z =y + 1) = [a(y) & b(z)]

bababababa = ¢
abaabaabaaba |~ ¢
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First Order Logic — Examples

Examples of FO(<) formulas

> o =Vx(a(x) V b(x)) AVyVz(z =y + 1) = [a(y) & b(z)]

bababababa = ¢
abaabaabaaba [~ ¢
»y=x+1E(x<y)A(-Fz,x <z <y).

> first(x) = -3z, z < x.

Conversely, < is not expressible in FO(+1) [Th82]. How to prove it?
def

> (min C B) = Vg Ix[b(x) A first(x)].
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First Order Logic — Examples

> o =Vx(a(x) V b(x)) AVyVz(z=y + 1) = [a(y) & b(z)]

bababababa = ¢
abaabaabaaba = ¢

v

y=x+1Z(x<y)A(-3z,x <z <y).

Conversely, < is not expressible in FO(+1) [Th82]. How to prove it?
first(x) =37,z < x

(min C B) £\, _p Ix[b(x) A first(x)].

L(p Afirst = {a} Alast = {b}) = (ab)™.

Hence, (ab)™ is expressible in FO(<). How to automatically get a formula?

vV vV.v v VY

The language (aa)™ cannot be expressed in FO(<)! How to prove it?
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Linear Temporal Logic LTL (Pnueli 1977)

pu=Lllal-pleVe|Xe|lpUyp I
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Linear Temporal Logic LTL (Pnueli 1977)

pu=1lal-pleVe| XeleUe l

Semantics: w € A* and i € pos(w)

w,i = a if wi=a

[ @ L L @ { @ { { OLEL
a b a a c b a d b
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Linear Temporal Logic LTL (Pnueli 1977)

pu=Lllal-pleVe| XelpUep l

Semantics: w € A* and i € pos(w)

w,il=a if w,=a
w,i = —p if w,ilEe
w,ilEeVy if wiiEe V wiEY

[ 4 L L d L d L d ® @ ® L L
a b a a c b a d b
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Linear Temporal Logic LTL (Pnueli 1977)

pu=1lal-pleVe| XeleUe I

Semantics: w € A* and i € pos(w)

w,i = a if wi=a

w,i = —p it w,ifEp
w,iEeVYy if wiEe V wiEy
w,i =X if wit+lEep

X
@ L @ @ L

@ ® ® ® L S
P
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Linear Temporal Logic LTL (Pnueli 1977)

pu=1lal-pleVe| XeleUep I

Semantics: w € A* and i € pos(w)

w,i = a if wi=a

w,i = —p it w,ifEp

w,iEeVYy if wiEe V wiEy

w,i =X if wit+lEep

w,iEeUy if Fki<k NwkEY AVY.(I<j<k)=w,jEp

Uy
@ L @ @ L L L
) © ® "

22/49



Linear Temporal Logic LTL (Pnueli 1977)

pu=1lal-pleVe| XeleUe l

Semantics: w € A* and i € pos(w)

w,i = a if wi=a

w,i = —p it w,ifEp

w,iEeVYy if wiEe V wiEy

w,i =X if wit+lEep

w,iEeUy if Fki<k NwkEY AVY.(Ii<j<k)=w,jEp

Uy
@ L @ @ L L L @ -
) © ® "

¢ € LTL(A, X, U) defines the language £(¢) = {w | w,1 = ¢}.
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Useful LTL Macros

Macros

» Fp=TUp (eventually).
> Gp=-F-p (always in the future).
Fo
® L L @ ® s
Gy
@ @ O e
¥

®
¥

<o €O
S J
ASY

!
S

?)



Examples of LTL properties

Some languages definable in LTL

> F a defines the language A*aA*.
» G a defines the language a™.

» (ab)* is also definable: G(aV b)AaA F(bA=XT)A G(a <+ —Xb)

24/49



Examples of LTL properties

Some languages definable in LTL

> F a defines the language A*aA*.
» G a defines the language a™.

» (ab)* is also definable: G(aV b) AaA F(bA=XT)A G(a <+ —Xb)

24/49



Examples of LTL properties

Some languages definable in LTL

> F a defines the language A*aA*.
» G a defines the language a™.

» (ab)* is also definable: G(aV b)AaA F(bA—=XT)A G(a<+ —Xb)

24/49



Examples of LTL properties

Some languages definable in LTL

> F a defines the language A*aA*.
» G a defines the language a™.

» (ab)* is also definable: G(aV b)AaA F(bA=XT)A G(a<+> —Xb)
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Examples of LTL properties

Some languages definable in LTL

> F a defines the language A*aA*.
» G a defines the language a™.
(ab)* is also definable: G(aV b)AaA F(bA—=XT)A G(a <+ —Xb)

Can (aa)™ be defined in LTL? It does not seem so, but how to prove it?

v

v

On A*, LTL formulas can be easily translated in FO(<) formulas.

v

Does the converse hold? Difficult because LTL only handles one free variable.

v

Syntactic monoids help!
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Expressiveness results



FO with one variable

FO'(<) = where only one variable name is allowed.

Example: FO with one variable

The following conditions are equivalent:
1. L is definable by an FO'(<) sentence.
2. L is a boolean combination of languages of the form A*aA*.

3. The syntactic monoid of L is idempotent and commutative:

Vs, t € M(L), s=s%and st = ts.
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Typical idempotent commutative monoid

> (24, U, 9).

» Hasse diagram of representation in J-classes:

1
Y
*a *h *c
A,
*ab *ac *bc

27/49
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FO with one variable

Example: FO with one variable

The following conditions are equivalent:
1. L is definable by an FO' sentence.
2. L is a boolean combination of languages of the form A*aA*.

3. The syntactic monoid of L is idempotent and commutative:

Vs, t € M(L), s =5 and st = ts.

Proof of 1 = 2

» In FO, binary symbol < is useless: x < x=T.

» Every formula equivalent to 3xp(x), with ¢ quantifier-free.
> Get rid of negation in atoms: —b(x) =V, a(x). If a# b: a(x) A b(x) = L.
» Hence A cp b(x) A Accc mc(x) reduce to a single predicate a(x) or L,

» dx.(a(x) V b(x)) = Ix.a(x) V Ix.b(x) ~» reduce to boolean combination
of formulas ¢ = 3x.a(x).

> L(Ix.a(x)) = A*aA*.
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FO with one variable

Example: FO with one variable

The following conditions are equivalent:
1. L is definable by an FO' sentence.
2. L is a boolean combination of languages of the form A*aA*.

3. The syntactic monoid of L is idempotent and commutative:

Vs, t € M(L), s=s”and st = ts.

Proof of 2 = 1
> L(Ix.a(x)) = A*aA*.

28/49



FO with one variable

Example: FO with one variable

The following conditions are equivalent:

1. L is definable by an FO' sentence.
2. L is a boolean combination of languages of the form A*aA*.

3. The syntactic monoid of L is idempotent and commutative:

Vs, t € M(L), s=s”and st = ts.

v

Proof of 2 = 3

> The syntactic monoid M(A*aA*) = {1, a} is idempotent and commutative.

» |dempotency and commutativity are inherited by boolean combinations.
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FO with one variable

Example: FO with one variable

The following conditions are equivalent:

1. L is definable by an FO' sentence.
2. L is a boolean combination of languages of the form A*aA*.
3. The syntactic monoid of L is idempotent and commutative:

Vs, t € M(L), s=s”and st = ts.

v

Proof of 3 = 2

> Let ¢ : A* — M recognizing L, with M idempotent and commutative.
> L=U,c,wy¥ '(s) ~ enough to show o~ *(s) € Bool({A*aA* | a € A}).

Since M idempotent commutative: alph(u) = alph(v) = ¢(u) = ¢(v).

Let [alph = B] be the set of words of alphabet exactly B.

@ (s) = Ugen,[alph = B] for A, = {B C A | Ju € ¢~ *(s),alph(u) = B}.
[alph = B] = Nyep A"bA™ \ Uogp A* A",

vV vV VvV vV
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Piecewise testable languages

» For u=a;---a, with a; € A, let
L(u) = A*a1A%ay - - - A*ap,A.

L(u) is the set of all words having u as a (scattered) subword.
Write u C v if v € L(u): uis a (scattered) subword of v.

Piecewise testable language: boolean combination of languages L(u), u € A*.

v

v

v

Examples:
> B" = A"\ U,y A"CA"

> (alph = B) = Npep A"DA™ \ U gp A"CA”

v

Questions: how to decide whether a language is piecewise testable?
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BY 1(<) fragment of FO(<)

» Piecewise testable languages have a logical characterization.

» BY;(<): fragment of FO(<) consisting of Boolean closure of formulas of the
form
Ixq . Ixep(xa, - Xk)

with ¢ quantifier-free.
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BY 1(<) fragment of FO(<)

» Piecewise testable languages have a logical characterization.

» BY;(<): fragment of FO(<) consisting of Boolean closure of formulas of the
form

with ¢ quantifier-free.
» Clearly BY.;1(<) can express piecewise testability:

A*a1A%as - - - A*a,A" = ,C(HXl coodxe A /\(X,' < X,'+1) AN a,-(x,-)).

» Conversely, using disjunctive normal form and 3X\/; p; = \/; 3Xy;, one can
start from 3X¢ where ¢ is a conjunction of atoms.

» One can get rid of negative atoms.
» Therefore, ¢ fixes conditions on the order of x;'s and their labels.

» This defines a piecewise testable language.
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Simon's theorem for piecewise testable languages

Piecewise testable languages, BY;, J-trivial monoids (Simon-Thomas)

The following conditions are equivalent.
1. Lis BX;(<) definable.
2. L is piecewise testable.
3. M(L) is finite and J-trivial.

Recall: J-trivial means u J v = u=v.

BY.1(<) definability is decidable. \

Example: (ab)* is not piecewise testable (on any alphabet containing {a, b}).
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Simon's theorem for piecewise testable languages: proof (1)

» Note that L(u) is the set of words having u as a (scattered) subword.
> Define u ~ v if u and v have the same (scattered) subwords of length < k.
Example: abba ~, baba +, aabb.

. .. . <k
> ~, C A" x A* is a congruence of finite index (at most [2477| classes).
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Simon's theorem for piecewise testable languages: proof (1)

> Note that L(u) is the set of words having u as a (scattered) subword.
> Define u ~ v if u and v have the same (scattered) subwords of length < k.
Example: abba ~, baba +, aabb.

. . . <k
> ~, C A* x A* is a congruence of finite index (at most [2477| classes).

TFAE:

1. L is piecewise testable.

2. There exists k > 0 such that ~, C ~y.

4

Proof of 1 = 2
> L= U(ﬂ L(ui) N (A*\ L(VJ))> (Finite union and intersections).
Let k = max{|u;l, |vj|}.

If v~y v, then xuy ~ xvy for all x, y.
So by def. of k, xuy, xvy belong to the same languages L(u;), L(vj).

vV V.V Y

Hence xuy € L iff xvy € L, therefore u ~ v.
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Simon's theorem for piecewise testable languages: proof (1)

> Note that L(u) is the set of words having u as a (scattered) subword.
> Define u ~ v if u and v have the same (scattered) subwords of length < k.
Example: abba ~, baba +, aabb.

. . . <k
> ~, C A* x A* is a congruence of finite index (at most [2477| classes).

TFAE:

1. L is piecewise testable.

2. There exists k > 0 such that ~, C ~y.

4

Proof of 2 = 1

> L=n (L) = Usenc) n;t(s) is a union of ~-classes.

> If ~, C ~y, then L is a (finite) union of ~-classes.

» Enough to show that any ~-class is piecewise testable.
> The ~ class of a word u is ﬂ L(w)N ﬂ A\ L(w).

wCu,|w|<k wiZu,|w|<k
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Simon's theorem for piecewise testable languages: proof (2)

Proof of: L is piecewise testable = M(L) is J-trivial.

> Write u = n;(u) where ;. : A* — M(L) is the syntactic morphism.
» Assume u J v. We want u = v.
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Simon's theorem for piecewise testable languages: proof (2)

Proof of: L is piecewise testable = M(L) is J-trivial.

Write u = 1, (u) where n, : A* — M(L) is the syntactic morphism.

Assume u J v. We want u = v.

By definition of J: u = xvt and v = yuz. Hence u = xyuzt = (xy)"u(zt)".
Let k be such that ~p C o~y

Let n be such that  (xy)"u(zt)" ~x (xy) " u(zt)"+1.

Therefore, (xy)"u(zt)" ~k y(xy)"u(zt)"z

YV V.V vV VvV VY

Since ~x C ~p, we get  u = (xy)"u(zt)" = y(xy)"u(zt)"z = v.
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Simon's theorem for piecewise testable languages: proof (3)

» Recall that s <7 t if s = xty for some x,y € M.
> Note that if M(L) is J-trivial, then < is a partial order on M(L).
» By definition of <7, multiplying an element yields an element

» either equal to the original one,
> or strictly smaller.
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Simon's theorem for piecewise testable languages: proof (4)

M(L) J-trivial = L piecewise testable: Proof of O. Klima (1)

> Let m = size of largest < 7-chain, and k = 2m — 2. One shows ~, C ~.

> Let u~y v with u=u(l)---u(p) and v =v(1)---v(q).

> ufly, ..., 0] %f \word made of letters at positions {l1,..., Lk} from left to right
> Fori<juliej]Euli,i+1,...j].
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Simon's theorem for piecewise testable languages: proof (4)

M(L) J-trivial = L piecewise testable: Proof of O. Klima (1)

> Let m = size of largest < 7-chain, and k = 2m — 2. One shows ~, C ~.

> Let u~y v with u=u(l)---u(p) and v =v(1)---v(q).

> ufly, ..., 0] %f \word made of letters at positions {l1,..., Lk} from left to right
> For i <julij]Euli,i+1,...j].

v

Position i in u is blue if u[l* (i —1)]-u(/) <z u[le(i—1)].
At most m — 1 blue positions iy < --- < i, in u.

i2

v
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Simon's theorem for piecewise testable languages: proof (4)

M(L) J-trivial = L piecewise testable: Proof of O. Klima (2)

i

» Claiml: any subword of u containing all blue positions is ~-equvalent to w.
Indeed for instance, by definition of blue indices, for any iy < i < ip11

uflei] = w[le(i—1)] = u[l-i]
= ufleigJu(i) = ufl*if]

This is where the hypothesis M(L) is J-trivial is used.

» For same reason: j; < --- < i, carries leftmost occurrence of u[iy * iy].
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Simon's theorem for piecewise testable languages: proof (4)

M(L) J-trivial = L piecewise testable: Proof of O. Klima (2)

> u~v=ulin,..., il ] Cv=>by---bg.

» Let v(7)--- v(i,) be its leftmost occurrence in v. Call 7i,..., i, blue in v.
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Simon's theorem for piecewise testable languages: proof (4)

M(L) J-trivial = L piecewise testable: Proof of O. Klima (2)

urpv=ulis,...,il] T v=>by---bg.

Let v(i;)--- v(i,) be its leftmost occurrence in v. Call 7y, ..., i, blue in v.
Dually, position j in v is red if v[j — 1,q] >z v(j)v][j — 1, q].

At most m — 1 red positions j; < -+ < js in v.

vV V. VvV VY

Corresponding red rightmost positions in u: Ji,. .., Js.
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Simon's theorem for piecewise testable languages: proof (4)

M(L) J-trivial = L piecewise testable: Proof of O. Klima (2)

urpv=ulis,...,il] T v=>by---bg.

—

Let v(i;)--- v(i,) be its leftmost occurrence in v. Call 7y, ..., i, blue in v.
Dually, position j in v is red if v[j — 1,q] >z v(j)v][j — 1, q].

At most m — 1 red positions j; < -+ < js in v.

Corresponding red rightmost positions in u: ji,. .., Js.

Claim2: ufin, .. e J1y - ds] = Vi oy drodiy - - -5 Js].

> The blue (red) positions carry the same word in u and v.
» The way they are shuffled in u and v only depends on (small) subwords.

vV Vv vV VY
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Simon's theorem for piecewise testable languages: proof (4)

M(L) J-trivial => L piecewise testable: Proof of O. Klima (2)

> u~v=ulin,..., il ] Cv=>by---bg.

Let v(7;)- - - v(i,) be its leftmost occurrence in v. Call 71, ..., i, blue in v.

v

Dually, position j in v is red if v[j — 1,q] >z v(j)v][j — 1, q].
At most m — 1 red positions j; < -+ < js in v.

Corresponding red rightmost positions in u: ji,. .., Js.

vV V VYV

Claim2: ufin, .. e J1y - ds] = Vi oy drodiy - - -5 Js].
> The blue (red) positions carry the same word in u and v.
» The way they are shuffled in u and v only depends on (small) subwords.

Consider in u a blue index i, and a red one j;, with for simplicity u(in) # u(ji).

v

ih <& u(i)--- u(ih)u(]'g) e uGS) Cu
& v(in)---v(in)v(e) - v(s) E v

& ih < Ji

35/49



Simon's theorem for piecewise testable languages: proof (4)

M(L) J-trivial = L piecewise testable: Proof of O. Klima (3)
» Claim1: any subword of u containing all blue positions is ~;-equvalent to w.
> Claim2: ufin, ... irsJiy.eests) = V[itseoosirydiy---sds)

» Hence

unr~yp U[i]_,.. '7ira]1)' . '7.75] = V[’;’la' . '77raj17' .. ajs] ~LV

that is
unryp v.
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Star-free languages

» Star-free languages: built from @ and letters using finitely many times
boolean operations and product.

@ € SF(A*) and {a} € SF(A"),
K,L € SF(A*) = KU L € SF(A¥),
K,L € SF(A*) = A"\ K € SF(A"),
K,L € SF(A*) = KL € SF(A").

Ao
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Star-free languages

» Star-free languages: built from @ and letters using finitely many times
boolean operations and product.

@ € SF(A*) and {a} € SF(A"),
K,L € SF(A*) = KU L € SF(A¥),
K,L € SF(A*) = A"\ K € SF(A"),
K,L € SF(A*) = KL € SF(A").

Ao

» Examples of star-free languages:
» Af=A"\g,
» Finite languages,
> Piecewise testable languages,
» B* = A"\ chB A"cA*,
» (ab)t =aA* N A*b N (A" \ A*(aaU bb)A*)
This is not piecewise testable, because the syntactic monoid is not J-trivial.

> Star-free languages are regular, but (aa)” is not star-free. How to prove it?
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Aperiodic monoids

» A finite monoid is aperiodic if it has only trivial subgroups, or equivalently:
In,Vs € M,s" = s"*1

or equivalently again
Vs e M,s¥ = s@tt

» A language is aperiodic if it is recognized by a finite aperiodic monoid.
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The Schiitzenberger-Kamp-McNaughton-Papert theorem

Theorem Schiitzenberger-Kamp-McNaughton-Papert

For a word language L C A*, TFAE
1. L can be expressed in FO(<).
2. L can be expressed in FO3(<).
3. L can be expressed in LTL with past operators.
4. L can be expressed in pure future LTL.
5. L is star-free.
6. L is aperiodic.
7. L is recognizable and its minimal automaton is counter-free: no loop
g— p—---— gwithuec At and p # q. |
» A pool of difficult results.
» Elegant proof of Th. Wilke for 4 <= 6, refined by Diekert, Gastin, Kufleitner.
» 6 —> decidable! Complexity of 7 : PSPACE-complete (J. Stern).
» Some implications are trivial. Eg. 4=3=2=10or6<7.
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Example: L = (ab)*

v

Counter-free

b

O——__ 0O

a

v

M(L) has 6 elements {1, a, b, a°, ab, ba} and s? = s3 for all s € M.
Star-free (ab)t = aA* N A*b N (A*\ A*(aaU bb)A*).
FO(<) and FO?(<) Vx(a(x) V b(x)) A
VywWz(z=y+1)=[a(y) < b(z)] A
first = {a} A last = {b}.

v

v

v

LTL: G(aVb)AaA F(bA=XT)A G(a<+ —Xb)
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v
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Example: L = (ab)*

v

Counter-free

b

O——__ 0O

a

v

M(L) has 6 elements {1, a, b, a°, ab, ba} and s? = s3 for all s € M.
Star-free (ab)t = aA* N A*b N (A*\ A*(aaU bb)A*).
FO(<) and FO?(<) Vx(a(x) V b(x)) A
VywWz(z=y+1)=[a(y) < b(z)] A
first = {a} A last = {b}.

v

v

» LTL: G(aV b)AaA F(bA=XT)A G(a > —Xb)
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From Star-free to Aperiodic (easy)

Lemma: Star-free are aperiodic

Any star-free language is aperiodic.

In particular, (aa)* is not aperiodic.
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From Star-free to Aperiodic (easy)

Lemma: Star-free are aperiodic
Any star-free language is aperiodic.

In particular, (aa)* is not aperiodic.

Proof Induction on L € SF(A*): find i(L) such that

VU c /4*7 ui(L) ~ ui(L)+1

vV vV VvV VY
X

KL) = i(K) + i(L): if w = xu/(FO+i(L)y 6 KL, then

> either xu (K)y € K for some prefix of xu't y’ of w, whence Xui(K)Hy, c K.
Therefore xu/F+i(D+1y, ¢ K1 |

> or symmetric case.
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From Aperiodic to Star-free (difficult)

Original intuition of the proof from Th. Wilke.
Also works from aperiodic to LTL.

» See M as a transformation monoid, acting on set Q@ = M of states.

» Induction on (|M|, |A|) ordered lexicographically.

» Either all letters induce identity on Q: easy.

» Or some letter a does not act surjectively on Q. [Aperiodicity used here].

» In this case, decompose element on M as uyaupa- - - au,.

» The initial and final segments u1, u, are on a smaller alphabet.
> The intermediate segments use less states.
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Tool for Induction (Aperiodic to Star-free)

v

Suitable construction for the induction [Diekert, Gastin]

v

For m € M, define a new internal composition on the set mM N Mm:

Xmo my = xmy.

v

One can check that this is a well-defined product.
We have mx o my = mxy, hence
> (mM N Mm,o, m) is a monoid.
> If M is aperiodic, then so is (mM N Mm, o, m).
> If M is aperiodic and m # 1, then |[mM N Mm| < |M|.
Since in thiscase 1 ¢ mM: ms =1= m*s* =1= m.(m*s*)=1=m=1.

v
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From Aperiodic to Star-free (1)

Proof of V. Diekert, M. Kufleitner (adapted from Th. Wilke)

> Fix a: A* — M aperiodic and let L = a~*(a(L)) = Uscqany @ 1 (5)-

» Induction on (|M|, |A|) ordered lexicographically.

» Enough to show that a~1(s) is star-free.

» Assume first s = 1. Then: a=1(1) = {a € A| a(a) = 1}*, hence star-free.
Indeed, uv=1=u=v =1.
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From Aperiodic to Star-free (2)

Proof of V. Diekert, M. Kufleitner (adapted from Th. Wilke)

v

Assume now s # 1.

If a(u) = s, then u contains a letter a such that a(a) # 1. Let a2 = «a(a).
Let B = A\ {a}, B = «a(B*) and 5 : B* — B be the restriction of o to B*.
B is a submonoid of M (and will be considered as an alphabet, too).

vV VvV VY
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From Aperiodic to Star-free (2)

Proof of V. Diekert, M. Kufleitner (adapted from Th. Wilke)

» Assume now s # 1.

> If a(u) = s, then u contains a letter a such that a(a) # 1. Let a = a(a).
Let B = A\ {a}, B=«a(B") and 8 : B* — B be the restriction of a to B*.
B is a submonoid of M (and will be considered as an alphabet, too).

v

v

> u = ujaupaus with a ¢ alph(uyu3) yields

)= U U 87%s) (@ (2)NaA" nA%a) - 57 (ss)

a€A,a(a)#1l s=s15253

v

By induction hypothesis, we have 371(s;) star-free (|B| < |M| and |B| < |A]).
Therefore we are left to show o *(s) M aA" 1 A*a is star-free.

v
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From Aperiodic to Star-free (3)

Proof of V. Diekert, M. Kufleitner (adapted from Th. Wilke)

» Let us show that o '(s) M aA" 1 A" 2 is star-free.
> Let B* be the free monoid over alphabet B = «(B*) (could have |B| > |A|).

» “Decompose’ o as aA* —— B 2 (aM N Ma, o, a), as follows.

> o(auiauy - - - aup) = B(u1) - B(u2) - - - B(un). Erase a
> ~ morphism defined, for b € B, by v(b) = aba. Reintroduce it morphically!
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From Aperiodic to Star-free (3)

Proof of V. Diekert, M. Kufleitner (adapted from Th. Wilke)

» Let us show that o *(s) M aA* 1 A*a is star-free.
> Let B* be the free monoid over alphabet B = «(B*) (could have |B| > |A|).

> “Decompose’ a as aA* N (aM N Ma, o, a), as follows.

> o(auiauy - - aup) = B(u1) - B(u2) - - - B(un). Erase a
> ~ morphism defined, for b € B, by v(b) = aba. Reintroduce it morphically!

Almost a factorization of a.

v

al(s)NaA*NA*a = o (v (s)).a

v

Since |aM N Ma| < |[M|, we get v~1(s) € SF(B).
It remains to show that o —! preserves star-freeness.

» For a one-letter word b € B, it holds o *(b) = a8~ *(b): use |B| < |A|.
» SF operators commute with o=, eg., 0 Y (KU L) = o }(K)Uo *(L).

v
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Summary

v

Many classes of regular languages have an algebraic characterization.

v

General framework given in Eilenberg-Reiterman theorem.

v

Variety of regular languages V : A — A*V, closed under
» boolean combinations,
> inverse image by homomorphisms ¢ : A* — B*,
> quotients L +— a~ 1L, L+ La~ .

v

Variety of finite monoids: class closed under (M, N) — M x N and division.

v

Eilenberg's theorem: Bijective correspondence between varieties of regular
languages and varieties of monoids.

v

Reiterman’s theorem: Equational definition of varieties.
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Extensions

» To other classes than varieties

> Drop complement: Positive varieties (Pin)

> Drop closure under quotients (Pippenberg)

> Drop both (Polak)

> General framework: duality (Gehrke, Grigorieff, Pin): definition by
(in)equations/identities.

» To other structures, like infinite words, Mazurkiewicz traces, trees.
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Questions?
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