Basics about algebraic approach to languages

Marc Zeitoun

LSV, ENS Cachan – LaBRI, U. Bordeaux – CNRS – INRIA

GAMES-EPIT Spring School 2011

Carcans Maubuisson May 23–27, 2011

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Motivation

- Word languages are used in computer science for many purposes.
- Natural models for
 - (text) programs,
 - inputs of programs,
 - behaviors of programs,
 - etc.
- Several formalisms to define regular sets of words: logics, regexp, automata... How to compare their expressive power?

The talk shows examples exploiting connections with algebra to answer this question.

Motivation: some examples

- Main question in this talk: expressiveness.
 Typical questions:
- Compare the expressive power of logic \mathcal{L}_1 and logic \mathcal{L}_2 .
- Is temporal logic with past and future operators more expressive than pure future temporal logic?

Motivation: some examples

- Main question in this talk: expressiveness.
 Typical questions:
- Compare the expressive power of logic \mathcal{L}_1 and logic \mathcal{L}_2 .
- Is temporal logic with past and future operators more expressive than pure future temporal logic?
- Is temporal logic with only unary operators weaker?
- Are FO(<) and LTL on words equally expressive?</p>
- ► Is a given regular language *L* expressible in first-order logic?
- A polynomial is a language of the form $\bigcup_{\text{finite}} B_0^* a_1 B_1^* \cdots a_k B_k^*$.

Given a regular language L, is it decidable if

- L is a polynomial?
- L is a finite boolean combination of polynomials?

Link between logic and algebra for regular languages

▶ A language $L \subseteq A^*$ is recognized by a monoid M if there is a morphism $\varphi: A^* \to M$ such that

$$L = \varphi^{-1}(\varphi(L))$$

▶ In other words: it is enough to look at φ image to decide membership to *L*.

Thm. Kleene-Büchi

For a language $L \subseteq A^*$, it is equivalent

- to be recognized by a finite automaton,
- to be definable by a regular expression,
- ▶ to be definable in Monadic Second Order logic,
- to be recognized by a finite monoid.

Regular languages and monoids

High-level Language L, Regular exp ab* description "Easy" Harder b Low-level a а Minimal automaton $\mathcal{A}_{\min}(L)$ 0 description a, bh

Regular languages and monoids

High-level vs. algebraic properties: prominent results

Language <i>L</i>	$\mathcal{A}_{min}(L)$	Synt(L)	Logical definability				
Star-free	Counter-free	А	FO(<), LTL				
[Sch65,McN-P71,K68]							
Piecewise testable	Very weak $+\ldots$	J	$Bool(\Sigma_1)$				
[S75,Th87]							
$\biguplus_f \prod$ non ambiguous	2-way part. ord.	DA	$\begin{array}{c} FO_2(<),\\ UTL, \Sigma_2\cap \Pi_2 \end{array}$				
[Sch76,SchThV01,ThW98,EVW97,PW97]							
Loc. threshold testable	Forbidden patterns	ACom * LI	FO(+1)				
[S85,ThW85,BP89]							

Some tools

- Syntactic monoid of a regular language.
- Monoid structure, in terms of ideals.
- Basic and more advanced pumping arguments.

Outline

Motivation

Regular languages and monoids Syntactic monoids

Background on finite monoids

Idempotents Green's relations

Logics

First order logic LTL

Expressiveness results

FO with one variable Piecewise testable languages First-order logic, star-free languages and aperiodic monoids

Summary

- ▶ Notation: Monoid $(M, \cdot, 1)$, with \cdot associative, 1 neutral.
- ► *A*^{*} free monoid over *A*.
- Morphism $\varphi: M \to N$.
- ▶ If $L \subseteq A^*$, its syntactic congruence $\sim_L \subseteq A^* \times A^*$ is defined by

$$u \sim_L v$$
 iff $\forall x, y \in xuy \in L \iff xvy \in L$.

▶ It is indeed a congruence: equivalence relation compatible with concatenation.

$$u \sim_L v \implies [x(uw)y \in L \Leftrightarrow x(vw)y \in L] \implies uw \sim_L vw$$

Syntactic monoid $M(L) = A^*/\sim_L$ and syntactic morphism $\eta_L : A^* \to M(L)$.

Thm. (Myhill)

A language is regular if and only if its syntactic congruence has finite index.

Say that M_1 divides M_2 if M_1 is a quotient of a submonoid of M_2 .

Syntactic monoid and recognition

Monoids recognizing L are exactly those which are divided by M(L).

Say that M_1 divides M_2 if M_1 is a quotient of a submonoid of M_2 .

Syntactic monoid and recognition

Monoids recognizing L are exactly those which are divided by M(L).

Proof

• η_L recognizes L since $\eta_L^{-1}(\eta_L(L)) = L$:

 $u \in \eta_L^{-1}(\eta_L(L)) \Rightarrow \eta_L(u) \in \eta_L(L) \Rightarrow \exists v \in L, u \sim_L v \Rightarrow u \in L.$

Say that M_1 divides M_2 if M_1 is a quotient of a submonoid of M_2 .

Syntactic monoid and recognition

Monoids recognizing L are exactly those which are divided by M(L).

Proof

• η_L recognizes L since $\eta_L^{-1}(\eta_L(L)) = L$:

$$u \in \eta_L^{-1}(\eta_L(L)) \Rightarrow \eta_L(u) \in \eta_L(L) \Rightarrow \exists v \in L, u \sim_L v \Rightarrow u \in L.$$

• If M(L) divides M:

Then $\alpha \circ \varphi$ recognizes *L*.

Say that M_1 divides M_2 if M_1 is a quotient of a submonoid of M_2 .

Syntactic monoid and recognition

Monoids recognizing L are exactly those which are divided by M(L).

Proof

• η_L recognizes L since $\eta_L^{-1}(\eta_L(L)) = L$:

$$u \in \eta_L^{-1}(\eta_L(L)) \Rightarrow \eta_L(u) \in \eta_L(L) \Rightarrow \exists v \in L, u \sim_L v \Rightarrow u \in L.$$

• If M(L) divides M:

$$\begin{array}{c} \varphi & N & \underline{\alpha \text{ one-to-one}} \\ \beta & \beta \\ A^* & \underline{\gamma}_L & M(L) \end{array}$$

Then $\alpha \circ \varphi$ recognizes *L*.

• Conversely, if $\varphi : A^* \to M$ recognizes L, then $\varphi(u) = \varphi(v)$ implies $u \sim_L v$. Therefore there is a surjective morphism β from $\varphi(A^*)$ into M(L).

M(L) is the monoid of transitions of the minimal automaton of L.
 Each word induces a mapping Q → Q (hence |M(L)| ≤ Q^Q).
 ⇒ Algorithm to compute M(L) (see Example next slide).
 In particular, we have M(A* \ L) = M(L)

• M(L) is the monoid of transitions of the minimal automaton of L. Each word induces a mapping $Q \to Q$ (hence $|M(L)| \leq Q^Q$).

 \Rightarrow Algorithm to compute M(L) (see Example next slide).

- In particular, we have $M(A^* \setminus L) = M(L)$
- $M(L_1 \cap L_2)$ and $M(L_1 \cup L_2)$ divide $M(L_1) \times M(L_2)$.
- Consequence: properties defined by identities are preserved through boolean combinations.
- For instance, if $M(L_1)$ and $M(L_2)$ are commutative, then so are
 - $M(L_1 \cap L_2)$,
 - $M(L_1 \cup L_2)$
 - $M(L_1 \setminus L_2)$.

Syntactic monoid: example

- Example: let $A = \{a, b, c\}$ and $L = A^*abA^*$.
- ▶ The minimal automaton of *L* is the following:

Generators

	1	2	3
а	2	2	3
Ь	1	3	3
с	1	1	3

Relations

$$aa = a = ca$$
, $ac = cb = cc = c$
 $bb = b = bc$, $ab = bab = 0$

Elements

12/49

Background on finite monoids

Idempotents in monoids

- An idempotent is an element $e \in M$ such that e = ee.
- Any $m \in M$ has a single power which is idempotent, denoted m^{ω} .

Since the loop has at most |M| elements, $m^{|M|!} = m^{\omega}$.

Ideal theory of monoids: Green's relations

- Automata exhibit some structure: graph representation, strongly connected components, DAG of scc, etc.
- One can extract such kind of information also out of a monoid M.

Ideal theory of monoids: Green's relations

- Automata exhibit some structure: graph representation, strongly connected components, DAG of scc, etc.
- One can extract such kind of information also out of a monoid M.
- The right action of M on itself yields a labeled graph $\mathcal{R}(M)$.

Strongly connected components of $\mathcal{R}(M)$ are called \mathcal{R} -classes.

- Formally, u and v are \mathcal{R} -equivalent, written $u \mathcal{R} v$ if
 - 1. There exists $x \in M$ such that v = ux, and
 - 2. There exists $y \in M$ such that u = vy.

• Or equivalently, if uM = vM: u and v generate the same right ideal.

- ▶ $u \mathcal{R} v$ if uM = vM,
- $u \mathcal{L} v$ if Mu = Mv,
- $u \mathcal{J} v$ if MuM = MvM,
- $\blacktriangleright \mathcal{H} = \mathcal{R} \cap \mathcal{L}.$

 ${a, b, c}^* ab {a, b, c}^*$

- ▶ $u \mathcal{R} v$ if uM = vM,
- ▶ $u \mathcal{L} v$ if Mu = Mv,
- $u \mathcal{J} v$ if MuM = MvM,
- $\blacktriangleright \mathcal{H} = \mathcal{R} \cap \mathcal{L}.$

 ${a, b, c}^* ab {a, b, c}^*$

- ▶ $u \mathcal{R} v$ if uM = vM,
- ▶ $u \mathcal{L} v$ if Mu = Mv,
- $u \mathcal{J} v$ if MuM = MvM,
- $\blacktriangleright \mathcal{H} = \mathcal{R} \cap \mathcal{L}.$

* ab

 ${a, b, c}^* ab {a, b, c}^*$

- ▶ $u \mathcal{R} v$ if uM = vM,
- ▶ $u \mathcal{L} v$ if Mu = Mv,
- $u \mathcal{J} v$ if MuM = MvM,
- $\blacktriangleright \mathcal{H} = \mathcal{R} \cap \mathcal{L}.$

 $(ca = a) \land (ac = c) \Rightarrow a \mathcal{R} c.$

* ab

 ${a, b, c}^* ab {a, b, c}^*$

- ▶ $u \mathcal{R} v$ if uM = vM,
- ▶ $u \mathcal{L} v$ if Mu = Mv,
- $u \mathcal{J} v$ if MuM = MvM,
- $\blacktriangleright \mathcal{H} = \mathcal{R} \cap \mathcal{L}.$

* ab

 ${a, b, c}^* ab {a, b, c}^*$

- ▶ $u \mathcal{R} v$ if uM = vM,
- ▶ $u \mathcal{L} v$ if Mu = Mv,
- $u \mathcal{J} v$ if MuM = MvM,
- $\blacktriangleright \mathcal{H} = \mathcal{R} \cap \mathcal{L}.$

*1

- $(ca = a) \land (ac = c) \Rightarrow a \mathcal{R} c.$
- $(ba = ba) \land (cba = a) \Rightarrow a \mathcal{L} ba.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Hence $b \mathcal{L} c \mathcal{R} a$, so $b \mathcal{J} a$.

 ${a, b, c}^* ab {a, b, c}^*$

- ▶ $u \mathcal{R} v$ if uM = vM,
- ▶ $u \mathcal{L} v$ if Mu = Mv,
- $u \mathcal{J} v$ if MuM = MvM,
- $\blacktriangleright \mathcal{H} = \mathcal{R} \cap \mathcal{L}.$

*1

- $(ca = a) \land (ac = c) \Rightarrow a \mathcal{R} c.$
- $(ba = ba) \land (cba = a) \Rightarrow a \mathcal{L} ba.$

- Hence $b \mathcal{L} c \mathcal{R} a$, so $b \mathcal{J} a$.
- ► Here, every *H*-class is trivial.

 ${a, b, c}^* ab {a, b, c}^*$

- ▶ $u \mathcal{R} v$ if uM = vM,
- ▶ $u \mathcal{L} v$ if Mu = Mv,
- $u \mathcal{J} v$ if MuM = MvM,
- $\blacktriangleright \mathcal{H} = \mathcal{R} \cap \mathcal{L}.$

*1

• $(ca = a) \land (ac = c) \Rightarrow a \mathcal{R} c.$

- $(ba = ba) \land (cba = a) \Rightarrow a \mathcal{L} ba.$
- Hence $b \mathcal{L} c \mathcal{R} a$, so $b \mathcal{J} a$.
- Here, every \mathcal{H} -class is trivial.

* ab

▶ In this example, we see that \mathcal{R} and \mathcal{L} commute, and $\mathcal{J} = \mathcal{R} \circ \mathcal{L} = \mathcal{L} \circ \mathcal{R}$.

Another example

- ▶ $u \mathcal{R} v$ if uM = vM,
- $u \mathcal{L} v$ if Mu = Mv,
- $u \mathcal{J} v$ if MuM = MvM,
- $\blacktriangleright \mathcal{H} = \mathcal{R} \cap \mathcal{L}.$

イロト イヨト イヨト イヨト

3

Another example

- ▶ $u \mathcal{R} v$ if uM = vM,
- $u \mathcal{L} v$ if Mu = Mv,
- $u \mathcal{J} v$ if MuM = MvM,
- $\blacktriangleright \mathcal{H} = \mathcal{R} \cap \mathcal{L}.$

*а	ab	cb	abcb	* c	abc
* bab	ba	* bcb	babcb	bc	babc

- ► Here, nontrivial *H*-classes.
- An *H*-class containing an idempotent * is a group.
- *H* is a group, or $HH \cap H = \emptyset$
- ► All *H*-classes from same *J*-class are isomorphic.

 $\blacktriangleright \mathcal{H} \subseteq \mathcal{R}, \mathcal{L} \subseteq \mathcal{J}.$

 \blacktriangleright ${\cal R}$ is a left congruence, ${\cal L}$ is a right congruence.

- $\blacktriangleright \mathcal{H} \subseteq \mathcal{R}, \mathcal{L} \subseteq \mathcal{J}.$
- $\blacktriangleright~ \mathcal{R}$ is a left congruence, $\mathcal L$ is a right congruence.
- > One can also consider the associated preorders. For instance:
 - ▶ $s \leq_{\mathcal{J}} t$ if $MsM \subseteq MtM$ (we say that s, t are \mathcal{J} -comparable).
 - $s <_{\mathcal{J}} t$ if $s \leq_{\mathcal{J}} t$ and $s \mathcal{J} t$.

- $\blacktriangleright \mathcal{H} \subseteq \mathcal{R}, \mathcal{L} \subseteq \mathcal{J}.$
- \blacktriangleright ${\cal R}$ is a left congruence, ${\cal L}$ is a right congruence.
- > One can also consider the associated preorders. For instance:
 - ▶ $s \leq_{\mathcal{J}} t$ if $MsM \subseteq MtM$ (we say that s, t are \mathcal{J} -comparable).
 - $s <_{\mathcal{J}} t$ if $s \leq_{\mathcal{J}} t$ and $s \mathcal{J} t$.

An important property

In a finite monoid, $\mathcal{J} = \mathcal{R} \circ \mathcal{L} = \mathcal{L} \circ \mathcal{R}$.

- $\blacktriangleright \mathcal{H} \subseteq \mathcal{R}, \mathcal{L} \subseteq \mathcal{J}.$
- \blacktriangleright ${\cal R}$ is a left congruence, ${\cal L}$ is a right congruence.
- > One can also consider the associated preorders. For instance:
 - ▶ $s \leq_{\mathcal{J}} t$ if $MsM \subseteq MtM$ (we say that s, t are \mathcal{J} -comparable).
 - $s <_{\mathcal{J}} t$ if $s \leq_{\mathcal{J}} t$ and $s \mathcal{J} t$.

An important property

In a finite monoid, $\mathcal{J} = \mathcal{R} \circ \mathcal{L} = \mathcal{L} \circ \mathcal{R}$.

Proof of $\mathcal{J} = \mathcal{R} \circ \mathcal{L}$

 \supseteq If $u(\mathcal{R} \circ \mathcal{L}) v$, there is w st. $u \mathcal{R} w \mathcal{L} v$ so $u \mathcal{J} w \mathcal{J} v$.
Basic but important properties

- $\blacktriangleright \mathcal{H} \subseteq \mathcal{R}, \mathcal{L} \subseteq \mathcal{J}.$
- \blacktriangleright ${\cal R}$ is a left congruence, ${\cal L}$ is a right congruence.
- > One can also consider the associated preorders. For instance:
 - ▶ $s \leq_{\mathcal{J}} t$ if $MsM \subseteq MtM$ (we say that s, t are \mathcal{J} -comparable).
 - $s <_{\mathcal{J}} t$ if $s \leq_{\mathcal{J}} t$ and $s \mathcal{J} t$.

An important property

In a finite monoid, $\mathcal{J} = \mathcal{R} \circ \mathcal{L} = \mathcal{L} \circ \mathcal{R}$.

Proof of $\mathcal{J} = \mathcal{R} \circ \mathcal{L}$

- \supseteq If $u(\mathcal{R} \circ \mathcal{L}) v$, there is w st. $u \mathcal{R} w \mathcal{L} v$ so $u \mathcal{J} w \mathcal{J} v$.
- \subseteq If $u \mathcal{J} v$, then $(u = xvt) \land (v = yuz)$. Let w = uz

$$u = (xy)u(zt) = (xy)^{\omega}u(zt)^{\omega} = u(zt)^{\omega} \leqslant_{\mathcal{R}} uz \leqslant_{\mathcal{R}} u$$

Hence $u \mathcal{R} w$ and symmetrically $w \mathcal{L} v$.

Basic but important properties

- $\blacktriangleright \mathcal{H} \subseteq \mathcal{R}, \mathcal{L} \subseteq \mathcal{J}.$
- \blacktriangleright ${\cal R}$ is a left congruence, ${\cal L}$ is a right congruence.
- > One can also consider the associated preorders. For instance:
 - ▶ $s \leq_{\mathcal{J}} t$ if $MsM \subseteq MtM$ (we say that s, t are \mathcal{J} -comparable).
 - $s <_{\mathcal{J}} t$ if $s \leq_{\mathcal{J}} t$ and $s \mathcal{J} t$.

An important property

In a finite monoid, $\mathcal{J} = \mathcal{R} \circ \mathcal{L} = \mathcal{L} \circ \mathcal{R}$.

Proof of $\mathcal{J} = \mathcal{R} \circ \mathcal{L}$

- \supseteq If $u(\mathcal{R} \circ \mathcal{L}) v$, there is w st. $u \mathcal{R} w \mathcal{L} v$ so $u \mathcal{J} w \mathcal{J} v$.
- \subseteq If $u \mathcal{J} v$, then $(u = xvt) \land (v = yuz)$. Let w = uz

$$u = (xy)u(zt) = (xy)^{\omega}u(zt)^{\omega} = u(zt)^{\omega} \leqslant_{\mathcal{R}} uz \leqslant_{\mathcal{R}} u$$

Hence $u \mathcal{R} w$ and symmetrically $w \mathcal{L} v$.

▶ With same arguments: \mathcal{J} -equivalent and \mathcal{R} -comparable implies \mathcal{R} -equivalent.

Logics

Syntax: $FO_A(<)$

$$\varphi ::= \bot \mid \mathbf{a}(\mathbf{x}) \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathbf{x} \leqslant \mathbf{y} \mid \exists \mathbf{x} \varphi$$

Semantics

- A formula is evaluated on a word $w \in A^*$.
- $\sigma : Var \to pos(w) = \{1, 2, \dots, |w|\}$ is a interpretation of (free) variables.
- < interpreted as the usual ordering between positions.</p>

Syntax: $FO_A(<)$

$$\varphi ::= \bot \mid \mathbf{a}(\mathbf{x}) \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathbf{x} \leqslant \mathbf{y} \mid \exists \mathbf{x} \varphi$$

$$(a \in A, x, y \in Var)$$

Semantics

- A formula is evaluated on a word $w \in A^*$.
- $\sigma : Var \to pos(w) = \{1, 2, \dots, |w|\}$ is a interpretation of (free) variables.
- < interpreted as the usual ordering between positions.</p>

$$t, \sigma \models a(x)$$
 if $w_{\sigma(x)} = a$

Syntax: $FO_A(<)$

$$\varphi ::= \bot \mid a(x) \mid \neg \varphi \mid \varphi \lor \varphi \mid x \leqslant y \mid \exists x \varphi$$

Semantics

- A formula is evaluated on a word $w \in A^*$.
- $\sigma : Var \to pos(w) = \{1, 2, \dots, |w|\}$ is a interpretation of (free) variables.
- < interpreted as the usual ordering between positions.</p>

$$\begin{array}{ll} t, \sigma \models \mathsf{a}(\mathsf{x}) & \text{if} & w_{\sigma(\mathsf{x})} = \mathsf{a} \\ t, \sigma \models \neg \varphi & \text{if} & t, \sigma \not\models \varphi \\ t, \sigma \models \varphi \lor \psi & \text{if} & t, \sigma \models \varphi \lor t, \sigma \models \psi \end{array}$$

Syntax: $FO_A(<)$

$$\varphi ::= \bot \mid \mathbf{a}(\mathbf{x}) \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathbf{x} \leqslant \mathbf{y} \mid \exists \mathbf{x} \varphi$$

Semantics

- A formula is evaluated on a word $w \in A^*$.
- $\sigma : Var \to pos(w) = \{1, 2, \dots, |w|\}$ is a interpretation of (free) variables.
- < interpreted as the usual ordering between positions.</p>

$$t, \sigma \models a(x) \quad \text{if} \quad w_{\sigma(x)} = a$$

$$t, \sigma \models \neg \varphi \quad \text{if} \quad t, \sigma \not\models \varphi$$

$$t, \sigma \models \varphi \lor \psi \quad \text{if} \quad t, \sigma \models \varphi \lor t, \sigma \models \psi$$

$$t, \sigma \models x \le y \quad \text{if} \quad \sigma(x) \le \sigma(y)$$

Syntax: $FO_A(<)$

$$\varphi ::= \bot \mid \mathbf{a}(\mathbf{x}) \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathbf{x} \leqslant \mathbf{y} \mid \exists \mathbf{x} \varphi$$

Semantics

- A formula is evaluated on a word $w \in A^*$.
- $\sigma : Var \to pos(w) = \{1, 2, \dots, |w|\}$ is a interpretation of (free) variables.
- \blacktriangleright < interpreted as the usual ordering between positions.

$$\begin{array}{lll} t, \sigma \models a(x) & \text{if} & w_{\sigma(x)} = a \\ t, \sigma \models \neg \varphi & \text{if} & t, \sigma \not\models \varphi \\ t, \sigma \models \varphi \lor \psi & \text{if} & t, \sigma \models \varphi \lor t, \sigma \models \psi \\ t, \sigma \models x \leqslant y & \text{if} & \sigma(x) \leqslant \sigma(y) \\ t, \sigma \models \exists x \varphi & \text{if} & \exists v \in V : t, \{\sigma \cup [x \mapsto v]\} \models \varphi \end{array}$$

Syntax: $FO_A(<)$

$$\varphi ::= \bot \mid a(x) \mid \neg \varphi \mid \varphi \lor \varphi \mid x \leqslant y \mid \exists x \varphi$$

Semantics

- A formula is evaluated on a word $w \in A^*$.
- $\sigma : Var \to pos(w) = \{1, 2, \dots, |w|\}$ is a interpretation of (free) variables.

 $(a \in A, x, y \in Var)$

イロト 不得 トイヨト イヨト ヨー うらで

< interpreted as the usual ordering between positions.</p>

$$\begin{array}{lll} t, \sigma \models a(x) & \text{if} & w_{\sigma(x)} = a \\ t, \sigma \models \neg \varphi & \text{if} & t, \sigma \not\models \varphi \\ t, \sigma \models \varphi \lor \psi & \text{if} & t, \sigma \models \varphi \lor t, \sigma \models \psi \\ t, \sigma \models x \leqslant y & \text{if} & \sigma(x) \leqslant \sigma(y) \\ t, \sigma \models \exists x \varphi & \text{if} & \exists v \in V : t, \{\sigma \cup [x \mapsto v]\} \models \varphi \end{array}$$

Macros $\forall x \varphi : \neg \exists x \neg \varphi$ $\varphi \land \psi : \neg (\neg \varphi \lor \neg \psi)$ $\varphi \Rightarrow \psi : \psi \lor \neg \varphi$ $\varphi \Leftrightarrow \psi \dots$

Syntax: $FO_A(<)$

$$\varphi ::= \bot \mid a(x) \mid \neg \varphi \mid \varphi \lor \varphi \mid x \leqslant y \mid \exists x \varphi$$

Semantics

- A formula is evaluated on a word $w \in A^*$.
- σ : Var \rightarrow pos(w) = {1, 2, ..., |w|} is a interpretation of (free) variables.

 $(a \in A, x, y \in Var)$

< interpreted as the usual ordering between positions.</p>

$$\begin{array}{lll} t, \sigma \models a(x) & \text{if} & w_{\sigma(x)} = a \\ t, \sigma \models \neg \varphi & \text{if} & t, \sigma \not\models \varphi \\ t, \sigma \models \varphi \lor \psi & \text{if} & t, \sigma \models \varphi \lor t, \sigma \models \psi \\ t, \sigma \models x \leqslant y & \text{if} & \sigma(x) \leqslant \sigma(y) \\ t, \sigma \models \exists x \varphi & \text{if} & \exists v \in V : t, \{\sigma \cup [x \mapsto v]\} \models \varphi \end{array}$$

Macros

 $\forall \mathbf{x}\varphi: \neg \exists \mathbf{x}\neg \varphi \qquad \varphi \land \psi: \neg (\neg \varphi \lor \neg \psi) \qquad \varphi \Rightarrow \psi: \psi \lor \neg \varphi \qquad \varphi \Leftrightarrow \psi \dots$

A sentence $\varphi \in \mathsf{FO}(<)$ defines the language $\mathcal{L}(\varphi) = \{ w \mid w \models \varphi \} \subseteq A_{\mathbb{P}}^*$.

First Order Logic — Examples

Examples of FO(<) formulas

 $\bullet \ \varphi = \forall x (a(x) \lor b(x)) \land \forall y \forall z (z = y + 1) \Rightarrow [a(y) \Leftrightarrow b(z)]$

 $bababababa \models \varphi$ $abaabaabaabaaba \not\models \varphi$

First Order Logic — Examples

Examples of FO(<) formulas

 $\blacktriangleright \varphi = \forall x (a(x) \lor b(x)) \land \forall y \forall z (z = y + 1) \Rightarrow [a(y) \Leftrightarrow b(z)]$

 $bababababa \models \varphi$ $abaabaabaaba \not\models \varphi$

First Order Logic — Examples

Examples of FO(<) formulas

 $\blacktriangleright \varphi = \forall x (a(x) \lor b(x)) \land \forall y \forall z (z = y + 1) \Rightarrow [a(y) \Leftrightarrow b(z)]$

 $bababababa \models \varphi$ $abaabaabaaba \not\models \varphi$

The language $(aa)^+$ cannot be expressed in FO(<)! How to prove it?

Syntax: LTL(A, X, U)

$$\varphi ::= \bot \mid \textbf{\textit{a}} \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{X} \varphi \mid \varphi \mathsf{U} \varphi$$

Syntax: LTL(A, X, U)

$$\varphi ::= \bot \mid \mathbf{a} \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{X} \varphi \mid \varphi \: \mathsf{U} \varphi$$

Semantics: $w \in A^*$ and $i \in pos(w)$

$$w, i \models a \qquad \text{if} \qquad w_i = a$$

$$w, i \models \neg \varphi \qquad \text{if} \qquad w, i \not\models \varphi$$

$$w, i \models \varphi \lor \psi \qquad \text{if} \qquad w, i \models \varphi \lor w, i \models \psi$$

Syntax: LTL(A, X, U)

$$\varphi ::= \bot \mid \mathbf{a} \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathbf{X} \varphi \mid \varphi \mathsf{U} \varphi$$

Semantics: $w \in A^*$ and $i \in pos(w)$

$$w, i \models a$$
if $w_i = a$ $w, i \models \neg \varphi$ if $w, i \not\models \varphi$ $w, i \models \varphi \lor \psi$ if $w, i \models \varphi \lor w, i \models \psi$ $w, i \models X \varphi$ if $w, i + 1 \models \varphi$

Syntax: LTL(A, X, U)

$$\varphi ::= \bot \mid \mathbf{a} \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{X} \varphi \mid \mathbf{\varphi} \mathsf{U} \varphi$$

Semantics: $w \in A^*$ and $i \in pos(w)$

$$\begin{array}{lll} w,i \models a & \text{if} & w_i = a \\ w,i \models \neg \varphi & \text{if} & w,i \not\models \varphi \\ w,i \models \varphi \lor \psi & \text{if} & w,i \models \varphi \lor w,i \models \psi \\ w,i \models X \varphi & \text{if} & w,i+1 \models \varphi \\ w,i \models \varphi \cup \psi & \text{if} & \exists k. \ i \leq k \land w, k \models \psi \land \forall j. \ (i \leq j < k) \Rightarrow w, j \models \varphi \end{array}$$

Syntax: LTL(A, X, U)

$$\varphi ::= \bot \mid \textbf{\textit{a}} \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{X} \varphi \mid \varphi \: \mathsf{U} \: \varphi$$

Semantics: $w \in A^*$ and $i \in pos(w)$

$$\begin{array}{lll} w,i \models a & \text{if} & w_i = a \\ w,i \models \neg \varphi & \text{if} & w,i \not\models \varphi \\ w,i \models \varphi \lor \psi & \text{if} & w,i \models \varphi \lor w,i \models \psi \\ w,i \models X \varphi & \text{if} & w,i+1 \models \varphi \\ w,i \models \varphi \cup \psi & \text{if} & \exists k. \ i \leqslant k \land w, k \models \psi \land \forall j. \ (i \leqslant j < k) \Rightarrow w, j \models \varphi \end{array}$$

イロト イロト イヨト イヨト 三日

Useful LTL Macros

Macros

- $\blacktriangleright \ \mathsf{F} \, \varphi = \top \, \mathsf{U} \, \varphi \qquad \text{(eventually)}.$
- $G \varphi = \neg F \neg \varphi$ (always in the future).

- F a defines the language A^*aA^* .
- G a defines the language a^+ .
- $(ab)^+$ is also definable: $G(a \lor b) \land a \land F(b \land \neg X \top) \land G(a \leftrightarrow \neg Xb)$

- F a defines the language A^*aA^* .
- G a defines the language a^+ .
- $(ab)^+$ is also definable: $G(a \lor b) \land a \land F(b \land \neg X \top) \land G(a \leftrightarrow \neg Xb)$

- F a defines the language A^*aA^* .
- G a defines the language a^+ .
- $(ab)^+$ is also definable: $G(a \lor b) \land a \land F(b \land \neg X \top) \land G(a \leftrightarrow \neg Xb)$

- F a defines the language A^*aA^* .
- G a defines the language a^+ .
- $(ab)^+$ is also definable: $G(a \lor b) \land a \land F(b \land \neg X \top) \land G(a \leftrightarrow \neg Xb)$

Some languages definable in LTL

- F a defines the language A^*aA^* .
- G a defines the language a^+ .
- ► $(ab)^+$ is also definable: $G(a \lor b) \land a \land F(b \land \neg X \top) \land G(a \leftrightarrow \neg Xb)$
- ▶ Can $(aa)^+$ be defined in LTL? It does not seem so, but how to prove it?
- > On A^* , LTL formulas can be easily translated in FO(<) formulas.
- Does the converse hold? Difficult because LTL only handles one free variable.

Syntactic monoids help!

Expressiveness results

 $FO^1(<) =$ where only one variable name is allowed.

Example: FO with one variable

The following conditions are equivalent:

- 1. *L* is definable by an $FO^1(<)$ sentence.
- 2. L is a boolean combination of languages of the form A^*aA^* .
- 3. The syntactic monoid of L is idempotent and commutative:

 $\forall s, t \in M(L), \qquad s = s^2 \text{ and } st = ts.$

・ロト ・ ア・ ・ ヨ ・ ・ ヨ ・ ・ シック

Typical idempotent commutative monoid

- ► $(2^A, \cup, \varnothing)$.
- \blacktriangleright Hasse diagram of representation in $\mathcal J\text{-classes:}$

Example: FO with one variable

The following conditions are equivalent:

- 1. L is definable by an FO¹ sentence.
- 2. *L* is a boolean combination of languages of the form A^*aA^* .
- 3. The syntactic monoid of L is idempotent and commutative:

$$\forall s, t \in M(L), \qquad s = s^2 \text{ and } st = ts.$$

Proof of $1 \Rightarrow 2$

- ▶ In FO¹, binary symbol < is useless: $x \leq x \equiv \top$.
- Every formula equivalent to $\exists x \varphi(x)$, with φ quantifier-free.
- Get rid of negation in atoms: $\neg b(x) \equiv \bigvee_{b \neq a} a(x)$. If $a \neq b$: $a(x) \land b(x) \equiv \bot$.
- ► Hence $\bigwedge_{b \in B} b(x) \land \bigwedge_{c \in C} \neg c(x)$ reduce to a single predicate a(x) or \bot ,
- ∃x.(a(x) ∨ b(x)) ≡ ∃x.a(x) ∨ ∃x.b(x) → reduce to boolean combination of formulas φ = ∃x.a(x).

$$\blacktriangleright \mathcal{L}(\exists x.a(x)) = A^* a A^*$$

Example: FO with one variable

The following conditions are equivalent:

- 1. L is definable by an FO¹ sentence.
- 2. *L* is a boolean combination of languages of the form A^*aA^* .
- 3. The syntactic monoid of L is idempotent and commutative:

$$\forall s, t \in M(L), \qquad s = s^2 \text{ and } st = ts.$$

Proof of $2 \Rightarrow 1$

$$\blacktriangleright \mathcal{L}(\exists x.a(x)) = A^* a A^*.$$

Example: FO with one variable

The following conditions are equivalent:

- 1. L is definable by an FO¹ sentence.
- 2. L is a boolean combination of languages of the form A^*aA^* .
- 3. The syntactic monoid of L is idempotent and commutative:

$$\forall s, t \in M(L), \qquad s = s^2 \text{ and } st = ts.$$

Proof of $2 \Rightarrow 3$

- The syntactic monoid $M(A^*aA^*) = \{1, a\}$ is idempotent and commutative.
- Idempotency and commutativity are inherited by boolean combinations.

Example: FO with one variable

The following conditions are equivalent:

- 1. *L* is definable by an FO^1 sentence.
- 2. *L* is a boolean combination of languages of the form A^*aA^* .
- 3. The syntactic monoid of L is idempotent and commutative:

$$\forall s, t \in M(L), \qquad s = s^2 \text{ and } st = ts.$$

Proof of $3 \Rightarrow 2$

- Let $\varphi : A^* \to M$ recognizing L, with M idempotent and commutative.
- ► $L = \bigcup_{s \in \varphi(L)} \varphi^{-1}(s) \rightsquigarrow$ enough to show $\varphi^{-1}(s) \in \text{Bool}(\{A^*aA^* \mid a \in A\}).$
- Since *M* idempotent commutative: $alph(u) = alph(v) \Rightarrow \varphi(u) = \varphi(v)$.
- Let [alph = B] be the set of words of alphabet exactly B.
- ▶ $\varphi^{-1}(s) = \bigcup_{B \in A_s} [alph = B]$ for $A_s = \{B \subseteq A \mid \exists u \in \varphi^{-1}(s), alph(u) = B\}.$
- ► $[alph = B] = \bigcap_{b \in B} A^* b A^* \setminus \bigcup_{c \notin B} A^* c A^*.$

Piecewise testable languages

For
$$u = a_1 \cdots a_n$$
 with $a_i \in A$, let

$$L(u) = A^* a_1 A^* a_2 \cdots A^* a_n A^*.$$

L(u) is the set of all words having u as a (scattered) subword.

- Write $u \sqsubseteq v$ if $v \in L(u)$: u is a (scattered) subword of v.
- ▶ Piecewise testable language: boolean combination of languages L(u), $u \in A^*$.
- Examples:
 - $B^* = A^* \setminus \bigcup_{c \notin B} A^* c A^*$
 - (alph = B) = $\bigcap_{b \in B} A^* b A^* \setminus \bigcup_{c \notin B} A^* c A^*$
- Questions: how to decide whether a language is piecewise testable?

$B\Sigma_1(<)$ fragment of FO(<)

- ▶ Piecewise testable languages have a logical characterization.
- BΣ₁(<): fragment of FO(<) consisting of Boolean closure of formulas of the form</p>

 $\exists x_1 \ldots \exists x_k \varphi(x_1, \ldots, x_k)$

with φ quantifier-free.

$B\Sigma_1(<)$ fragment of FO(<)

- ▶ Piecewise testable languages have a logical characterization.
- BΣ₁(<): fragment of FO(<) consisting of Boolean closure of formulas of the form</p>

 $\exists x_1 \ldots \exists x_k \varphi(x_1, \ldots, x_k)$

with φ quantifier-free.

• Clearly $B\Sigma_1(<)$ can express piecewise testability:

$$\mathsf{A}^*\mathsf{a}_1\mathsf{A}^*\mathsf{a}_2\cdots\mathsf{A}^*\mathsf{a}_n\mathsf{A}^* = \mathcal{L}(\exists x_1\ldots \exists x_n \wedge \bigwedge(x_i < x_{i+1}) \wedge \mathsf{a}_i(x_i)).$$

$B\Sigma_1(<)$ fragment of FO(<)

- ▶ Piecewise testable languages have a logical characterization.
- BΣ₁(<): fragment of FO(<) consisting of Boolean closure of formulas of the form</p>

 $\exists x_1 \ldots \exists x_k \varphi(x_1, \ldots, x_k)$

with φ quantifier-free.

• Clearly $B\Sigma_1(<)$ can express piecewise testability:

$$\mathcal{A}^* a_1 \mathcal{A}^* a_2 \cdots \mathcal{A}^* a_n \mathcal{A}^* = \mathcal{L}(\exists x_1 \ldots \exists x_n \land \bigwedge (x_i < x_{i+1}) \land a_i(x_i)).$$

- Conversely, using disjunctive normal form and $\exists \vec{x} \bigvee_i \varphi_i \equiv \bigvee_i \exists \vec{x} \varphi_i$, one can start from $\exists \vec{x} \varphi$ where φ is a conjunction of atoms.
- One can get rid of negative atoms.
- Therefore, φ fixes conditions on the order of x_i 's and their labels.
- > This defines a piecewise testable language.
Simon's theorem for piecewise testable languages

Piecewise testable languages, $B\Sigma_1$, \mathcal{J} -trivial monoids (Simon-Thomas)

The following conditions are equivalent.

- 1. *L* is $B\Sigma_1(<)$ definable.
- 2. L is piecewise testable.
- 3. M(L) is finite and \mathcal{J} -trivial.

Recall: \mathcal{J} -trivial means $u \mathcal{J} v \Rightarrow u = v$.

Corollary

 $B\Sigma_1(<)$ definability is decidable.

Example: $(ab)^+$ is not piecewise testable (on any alphabet containing $\{a, b\}$).

- \triangleright Note that L(u) is the set of words having u as a (scattered) subword.
- ▶ Define $u \sim_k v$ if u and v have the same (scattered) subwords of length $\leq k$. **Example**: abba \sim_2 baba \neq_2 aabb.
- ▶ $\sim_k \subseteq A^* \times A^*$ is a congruence of finite index (at most $|2^{A^{\leq k}}|$ classes).

- Note that L(u) is the set of words having u as a (scattered) subword.
- ▶ Define u ~_k v if u and v have the same (scattered) subwords of length ≤ k. Example: abba ~₂ baba ≁₂ aabb.
- $\sim_k \subseteq A^* \times A^*$ is a congruence of finite index

(at most $|2^{A^{\leqslant k}}|$ classes).

TFAE:

- 1. L is piecewise testable.
- 2. There exists $k \ge 0$ such that $\sim_k \subseteq \sim_L$.

Proof of $1 \Rightarrow 2$

 $\blacktriangleright L = \bigcup \Big(\bigcap L(u_i) \cap \bigcap (A^* \setminus L(v_j)) \Big).$

(Finite union and intersections).

- Let $k = \max\{|u_i|, |v_j|\}.$
- If $u \sim_k v$, then $xuy \sim_k xvy$ for all x, y.
- ▶ So by def. of k, xuy, xvy belong to the same languages $L(u_i)$, $L(v_j)$.
- ▶ Hence $xuy \in L$ iff $xvy \in L$, therefore $u \sim_L v$.

- \triangleright Note that L(u) is the set of words having u as a (scattered) subword.
- ▶ Define $u \sim_k v$ if u and v have the same (scattered) subwords of length $\leq k$. **Example**: abba \sim_2 baba \neq_2 aabb.
- ▶ $\sim_k \subseteq A^* \times A^*$ is a congruence of finite index (at most $|2^{A^{\leq k}}|$ classes).

TFAE:

- 1. *L* is piecewise testable.
- 2. There exists $k \ge 0$ such that $\sim_k \subseteq \sim_L$.

Proof of $2 \Rightarrow 1$

- ► $L = \eta_L^{-1}(\eta_L(L)) = \bigcup_{s \in \eta_L(L)} \eta_L^{-1}(s)$ is a union of \sim_L -classes.
- ▶ If $\sim_k \subseteq \sim_L$, then *L* is a (finite) union of \sim_k -classes.
- Enough to show that any \sim_k -class is piecewise testable.
- ▶ The \sim_k class of a word *u* is $\bigcap L(w) \cap \bigcap A^* \setminus L(w)$. $w \sqsubseteq u, |w| \leq k$ $w \not\sqsubseteq u, |w| \leq k$

Proof of: *L* is piecewise testable $\implies M(L)$ is \mathcal{J} -trivial.

- Write $\underline{u} = \eta_L(u)$ where $\eta_L : A^* \to M(L)$ is the syntactic morphism.
- Assume $\underline{u} \mathcal{J} \underline{v}$. We want $\underline{u} = \underline{v}$.

Proof of: *L* is piecewise testable $\implies M(L)$ is \mathcal{J} -trivial.

- Write $\underline{u} = \eta_L(u)$ where $\eta_L : A^* \to M(L)$ is the syntactic morphism.
- Assume $\underline{u} \mathcal{J} \underline{v}$. We want $\underline{u} = \underline{v}$.
- ▶ By definition of \mathcal{J} : $\underline{u} = \underline{xvt}$ and $\underline{v} = \underline{yuz}$. Hence $\underline{u} = \underline{xyuzt} = (\underline{xy})^n \underline{u}(\underline{zt})^n$.
- Let k be such that $\sim_k \subseteq \sim_L$.
- Let *n* be such that $(xy)^n u(zt)^n \sim_k (xy)^{n+1} u(zt)^{n+1}$.
- Therefore, $(xy)^n u(zt)^n \sim_k y(xy)^n u(zt)^n z$
- Since $\sim_k \subseteq \sim_L$, we get $\underline{u} = (\underline{x}\underline{y})^n \underline{u}(\underline{z}\underline{t})^n = \underline{y}(\underline{x}\underline{y})^n \underline{u}(\underline{z}\underline{t})^n \underline{z} = \underline{v}$.

- Recall that $s \leq_{\mathcal{J}} t$ if s = xty for some $x, y \in M$.
- ▶ Note that if M(L) is \mathcal{J} -trivial, then \leq_J is a partial order on M(L).

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

- ▶ By definition of $\leq_{\mathcal{J}}$, multiplying an element yields an element
 - either equal to the original one,
 - or strictly smaller.

M(L) \mathcal{J} -trivial $\Longrightarrow L$ piecewise testable: Proof of O. Klima (1)

- ▶ Let $m = \text{size of largest} <_{\mathcal{J}} \text{-chain, and } k = 2m 2$. One shows $\sim_k \subseteq \sim_L$.
- Let $u \sim_k v$ with $u = u(1) \cdots u(p)$ and $v = v(1) \cdots v(q)$.
- ▶ $u[\ell_1, ..., \ell_k] \stackrel{\text{def}}{=} \text{word made of letters at positions } \{\ell_1, ..., \ell_k\}$ from left to right
- For $i \leq j$ $u[i \bullet j] \stackrel{\text{def}}{=} u[i, i+1, \dots, j]$.

M(L) \mathcal{J} -trivial $\Longrightarrow L$ piecewise testable: Proof of O. Klima (1)

- ▶ Let $m = \text{size of largest} <_{\mathcal{J}} \text{-chain, and } k = 2m 2$. One shows $\sim_k \subseteq \sim_L$.
- Let $u \sim_k v$ with $u = u(1) \cdots u(p)$ and $v = v(1) \cdots v(q)$.
- ▶ $u[\ell_1, ..., \ell_k] \stackrel{\text{def}}{=} \text{word made of letters at positions } \{\ell_1, ..., \ell_k\}$ from left to right
- For $i \leq j$ $u[i \bullet j] \stackrel{\text{def}}{=} u[i, i+1, \dots, j]$.
- ▶ Position *i* in *u* is blue if $\underline{u}[1 \cdot (i-1)] \cdot \underline{u}(i) <_{\mathcal{J}} \underline{u}[1 \cdot (i-1)]$.
- At most m-1 blue positions $i_1 < \cdots < i_r$ in u.

► Claim1: any subword of u containing all blue positions is ~_L-equvalent to u. Indeed for instance, by definition of blue indices, for any i_ℓ < i < i_{ℓ+1}

$$\underline{u}[1 \cdot i_{\ell}] = \underline{u}[1 \cdot (i-1)] = \underline{u}[1 \cdot i]$$
$$\implies \underline{u}[1 \cdot i_{\ell}]\underline{u}(i) = \underline{u}[1 \cdot i_{\ell}]$$

This is where the hypothesis M(L) is \mathcal{J} -trivial is used.

For same reason: $i_1 < \cdots < i_r$ carries leftmost occurrence of $u[i_1 \bullet i_r]$.

M(L) \mathcal{J} -trivial $\Longrightarrow L$ piecewise testable: Proof of O. Klima (2)

$$u \sim_k v \Rightarrow u[i_1, \ldots, i_r] \sqsubseteq v = b_1 \cdots b_q.$$

▶ Let $v(\tilde{i}_i) \cdots v(\tilde{i}_r)$ be its leftmost occurrence in v. Call $\tilde{i}_1, \ldots, \tilde{i}_r$ blue in v.

$M(L) \mathcal{J}$ -trivial $\Longrightarrow L$ piecewise testable: Proof of O. Klima (2)

- $u \sim_k v \Rightarrow u[i_1, \ldots, i_r] \sqsubseteq v = b_1 \cdots b_q.$
- ▶ Let $v(\tilde{i}_i) \cdots v(\tilde{i}_r)$ be its leftmost occurrence in v. Call $\tilde{i}_1, \ldots, \tilde{i}_r$ blue in v.
- ▶ Dually, position j in v is red if $\underline{v}[j-1,q] >_{\mathcal{J}} \underline{v}(j)\underline{v}[j-1,q]$.
- At most m-1 red positions $j_1 < \cdots < j_s$ in v.
- Corresponding red rightmost positions in $u: \tilde{j}_1, \ldots, \tilde{j}_s$.

$M(L) \mathcal{J}$ -trivial $\Longrightarrow L$ piecewise testable: Proof of O. Klima (2)

- $u \sim_k v \Rightarrow u[i_1, \ldots, i_r] \sqsubseteq v = b_1 \cdots b_q.$
- ▶ Let $v(\tilde{i}_i) \cdots v(\tilde{i}_r)$ be its leftmost occurrence in v. Call $\tilde{i}_1, \ldots, \tilde{i}_r$ blue in v.
- ▶ Dually, position *j* in *v* is red if $\underline{v}[j-1,q] >_{\mathcal{J}} \underline{v}(j)\underline{v}[j-1,q]$.
- At most m-1 red positions $j_1 < \cdots < j_s$ in v.
- Corresponding red rightmost positions in $u: \tilde{j}_1, \ldots, \tilde{j}_s$.
- ► Claim2: $u[i_1, \ldots, i_r, \tilde{j}_1, \ldots, \tilde{j}_s] = v[\tilde{i}_1, \ldots, \tilde{i}_r, j_1, \ldots, j_s].$
 - The blue (red) positions carry the same word in u and v.
 - The way they are shuffled in u and v only depends on (small) subwords.

$M(L) \mathcal{J}$ -trivial $\Longrightarrow L$ piecewise testable: Proof of O. Klima (2)

- $u \sim_k v \Rightarrow u[i_1, \ldots, i_r] \sqsubseteq v = b_1 \cdots b_q.$
- ▶ Let $v(\tilde{i}_i) \cdots v(\tilde{i}_r)$ be its leftmost occurrence in v. Call $\tilde{i}_1, \ldots, \tilde{i}_r$ blue in v.
- ▶ Dually, position j in v is red if $\underline{v}[j-1,q] >_{\mathcal{J}} \underline{v}(j)\underline{v}[j-1,q]$.
- At most m-1 red positions $j_1 < \cdots < j_s$ in v.
- Corresponding red rightmost positions in $u: \tilde{j}_1, \ldots, \tilde{j}_s$.
- ► Claim2: $u[i_1, \ldots, i_r, \tilde{j}_1, \ldots, \tilde{j}_s] = v[\tilde{i}_1, \ldots, \tilde{i}_r, j_1, \ldots, j_s].$
 - ▶ The blue (red) positions carry the same word in *u* and *v*.
 - ▶ The way they are shuffled in *u* and *v* only depends on (small) subwords.
- Consider in u a blue index i_h and a red one \tilde{j}_{ℓ} , with for simplicity $u(i_h) \neq u(\tilde{j}_{\ell})$.

$$\begin{split} i_h < \tilde{j}_\ell \Leftrightarrow u(i_1) \cdots u(i_h) u(\tilde{j}_\ell) \cdots u(\tilde{j}_s) &\sqsubseteq u \\ \Leftrightarrow v(\tilde{i}_1) \cdots v(\tilde{i}_h) v(j_\ell) \cdots v(j_s) &\sqsubseteq v \\ \Leftrightarrow \tilde{i}_h < j_\ell \end{split}$$

$M(L) \mathcal{J}$ -trivial $\Longrightarrow L$ piecewise testable: Proof of O. Klima (3)

- ▶ Claim1: any subword of *u* containing all blue positions is \sim_L -equvalent to *u*.
- ► Claim2: $u[i_1, \ldots, i_r, \tilde{j}_1, \ldots, \tilde{j}_s] = v[\tilde{i}_1, \ldots, \tilde{i}_r, j_1, \ldots, j_s]$
- Hence

$$u \sim_L u[i_1, \ldots, i_r, \tilde{j}_1, \ldots, \tilde{j}_s] = v[\tilde{i}_1, \ldots, \tilde{i}_r, j_1, \ldots, j_s] \sim_L \underline{v}$$

that is

 $u \sim_L v$.

Star-free languages

► Star-free languages: built from Ø and letters using finitely many times boolean operations and product.

1.
$$\emptyset \in \mathsf{SF}(A^*)$$
 and $\{a\} \in \mathsf{SF}(A^*)$,
2. $K, L \in \mathsf{SF}(A^*) \Rightarrow K \cup L \in \mathsf{SF}(A^*)$,
3. $K, L \in \mathsf{SF}(A^*) \Rightarrow A^* \setminus K \in \mathsf{SF}(A^*)$,

4.
$$K, L \in SF(A^*) \Rightarrow KL \in SF(A^*).$$

Star-free languages

► Star-free languages: built from Ø and letters using finitely many times boolean operations and product.

1.
$$\emptyset \in SF(A^*)$$
 and $\{a\} \in SF(A^*)$,

2.
$$K, L \in SF(A^*) \Rightarrow K \cup L \in SF(A^*)$$
,

3. $K, L \in SF(A^*) \Rightarrow A^* \setminus K \in SF(A^*)$,

4.
$$K, L \in SF(A^*) \Rightarrow KL \in SF(A^*).$$

- Examples of star-free languages:
 - $A^* = A^* \setminus \emptyset$,
 - Finite languages,
 - Piecewise testable languages,
 - $\blacksquare B^* = A^* \setminus \bigcup_{c \notin B} A^* c A^*,$
 - $\blacktriangleright (ab)^+ = aA^* \cap A^*b \cap (A^* \setminus A^*(aa \cup bb)A^*)$

This is not piecewise testable, because the syntactic monoid is not \mathcal{J} -trivial.

▶ Star-free languages are regular, but (*aa*)^{*} is not star-free. How to prove it?

A finite monoid is aperiodic if it has only trivial subgroups, or equivalently:

 $\exists n, \forall s \in M, s^n = s^{n+1}$

or equivalently again

$$\forall s \in M, s^{\omega} = s^{\omega+1}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

A language is aperiodic if it is recognized by a finite aperiodic monoid.

The Schützenberger-Kamp-McNaughton-Papert theorem

Theorem Schützenberger-Kamp-McNaughton-Papert

- For a word language $L \subseteq A^*$, TFAE
 - 1. L can be expressed in FO(<).
 - 2. L can be expressed in $FO^3(<)$.
 - 3. L can be expressed in LTL with past operators.
 - 4. L can be expressed in pure future LTL.
 - 5. L is star-free.
 - 6. *L* is aperiodic.

7. *L* is recognizable and its minimal automaton is counter-free: no loop $q \xrightarrow{u} p \xrightarrow{u} \cdots \xrightarrow{u} q$ with $u \in A^+$ and $p \neq q$.

- A pool of difficult results.
- Elegant proof of Th. Wilke for $4 \iff 6$, refined by Diekert, Gastin, Kufleitner.
- $6 \implies$ decidable! Complexity of 7 : PSPACE-complete (J. Stern).
- Some implications are trivial. Eg. $4 \Rightarrow 3 \Rightarrow 2 \Rightarrow 1$, or $6 \Leftrightarrow 7$.

Example:
$$L = (ab)^+$$

- M(L) has 6 elements $\{1, a, b, a^2, ab, ba\}$ and $s^2 = s^3$ for all $s \in M$.
- ▶ Star-free $(ab)^+ = aA^* \cap A^*b \cap (A^* \setminus A^*(aa \cup bb)A^*).$

► FO(<) and FO³(<)
$$\forall x (a(x) \lor b(x)) \land$$

 $\forall y \forall z (z = y + 1) \Rightarrow [a(y) \Leftrightarrow b(z)] \land$
first = {a} \land last = {b}.

► LTL: $G(a \lor b) \land a \land F(b \land \neg X \top) \land G(a \leftrightarrow \neg Xb)$

Example:
$$L = (ab)^+$$

- M(L) has 6 elements $\{1, a, b, a^2, ab, ba\}$ and $s^2 = s^3$ for all $s \in M$.
- ▶ Star-free $(ab)^+ = aA^* \cap A^*b \cap (A^* \setminus A^*(aa \cup bb)A^*).$

► FO(<) and FO³(<)
$$\forall x (a(x) \lor b(x)) \land$$

 $\forall y \forall z (z = y + 1) \Rightarrow [a(y) \Leftrightarrow b(z)] \land$
first = {a} \land last = {b}.

▶ LTL: $G(a \lor b) \land a \land F(b \land \neg X \top) \land G(a \leftrightarrow \neg Xb)$

Example:
$$L = (ab)^+$$

- M(L) has 6 elements $\{1, a, b, a^2, ab, ba\}$ and $s^2 = s^3$ for all $s \in M$.
- ▶ Star-free $(ab)^+ = aA^* \cap A^*b \cap (A^* \setminus A^*(aa \cup bb)A^*).$

► FO(<) and FO³(<)
$$\forall x (a(x) \lor b(x)) \land$$

 $\forall y \forall z (z = y + 1) \Rightarrow [a(y) \Leftrightarrow b(z)] \land$
first = {a} \land last = {b}.

► LTL: $G(a \lor b) \land a \land F(b \land \neg X \top) \land G(a \leftrightarrow \neg Xb)$

Example:
$$L = (ab)^+$$

- M(L) has 6 elements $\{1, a, b, a^2, ab, ba\}$ and $s^2 = s^3$ for all $s \in M$.
- ▶ Star-free $(ab)^+ = aA^* \cap A^*b \cap (A^* \setminus A^*(aa \cup bb)A^*).$

► FO(<) and FO³(<)
$$\forall x (a(x) \lor b(x)) \land$$

 $\forall y \forall z (z = y + 1) \Rightarrow [a(y) \Leftrightarrow b(z)] \land$
first = {a} \land last = {b}.

▶ LTL: $G(a \lor b) \land a \land F(b \land \neg X \top) \land G(a \leftrightarrow \neg Xb)$

From Star-free to Aperiodic (easy)

Lemma: Star-free are aperiodic

Any star-free language is aperiodic.

In particular, $(aa)^+$ is not aperiodic.

From Star-free to Aperiodic (easy)

Lemma: Star-free are aperiodic

Any star-free language is aperiodic.

In particular, $(aa)^+$ is not aperiodic.

Proof Induction on $L \in SF(A^*)$: find i(L) such that

 $\forall u \in A^*, \quad u^{i(L)} \sim_L u^{i(L)+1}.$

•
$$i(\emptyset) = 0$$
 and $i(a) = 2$.

$$\blacktriangleright i(A^* \setminus L) = i(L),$$

$$i(K \cup L) = \max(i(K), i(L)),$$

• i(KL) = i(K) + i(L): if $w = xu^{i(K)+i(L)}y \in KL$, then

- ▶ either $xu^{i(K)}y' \in K$ for some prefix of $xu^{i(K)}y'$ of w, whence $xu^{i(K)+1}y' \in K$. Therefore $xu^{i(K)+i(L)+1}y \in KL$,
- or symmetric case.

From Aperiodic to Star-free (difficult)

Original intuition of the proof from Th. Wilke. Also works from aperiodic to LTL.

- See M as a transformation monoid, acting on set Q = M of states.
- Induction on (|M|, |A|) ordered lexicographically.
- Either all letters induce identity on Q: easy.
- ▶ Or some letter *a* does not act surjectively on *Q*. [Aperiodicity used here].
- ▶ In this case, decompose element on M as $u_1 a u_2 a \cdots a u_n$.
 - The initial and final segments u_1, u_n are on a smaller alphabet.
 - The intermediate segments use less states.

Tool for Induction (Aperiodic to Star-free)

Suitable construction for the induction

- [Diekert, Gastin]
- ▶ For $m \in M$, define a new internal composition on the set $mM \cap Mm$:

 $xm \circ my = xmy$.

- One can check that this is a well-defined product.
- We have $mx \circ my = mxy$, hence
 - $(mM \cap Mm, \circ, m)$ is a monoid.
 - If *M* is aperiodic, then so is $(mM \cap Mm, \circ, m)$.
 - ▶ If *M* is aperiodic and $m \neq 1$, then $|mM \cap Mm| < |M|$. Since in this case $1 \notin mM$: $ms = 1 \Rightarrow m^{\omega}s^{\omega} = 1 \Rightarrow m.(m^{\omega}s^{\omega}) = 1 \Rightarrow m = 1$.

From Aperiodic to Star-free (1)

Proof of V. Diekert, M. Kufleitner (adapted from Th. Wilke)

- Fix $\alpha : A^* \to M$ aperiodic and let $L = \alpha^{-1}(\alpha(L)) = \bigcup_{s \in \alpha(L)} \alpha^{-1}(s)$.
- Induction on (|M|, |A|) ordered lexicographically.
- Enough to show that $\alpha^{-1}(s)$ is star-free.
- Assume first s = 1. Then: α⁻¹(1) = {a ∈ A | α(a) = 1}*, hence star-free. Indeed, uv = 1 ⇒ u = v = 1.

From Aperiodic to Star-free (2)

Proof of V. Diekert, M. Kufleitner (adapted from Th. Wilke)

- Assume now $s \neq 1$.
- If $\alpha(u) = s$, then u contains a letter a such that $\alpha(a) \neq 1$. Let $\underline{a} = \alpha(a)$.
- Let $B = A \setminus \{a\}$, $\underline{B} = \alpha(B^*)$ and $\beta : B^* \to \underline{B}$ be the restriction of α to B^* .
- <u>B</u> is a submonoid of M (and will be considered as an alphabet, too).

From Aperiodic to Star-free (2)

Proof of V. Diekert, M. Kufleitner (adapted from Th. Wilke)

- Assume now $s \neq 1$.
- If $\alpha(u) = s$, then u contains a letter a such that $\alpha(a) \neq 1$. Let $\underline{a} = \alpha(a)$.
- ▶ Let $B = A \setminus \{a\}$, $\underline{B} = \alpha(B^*)$ and $\beta : B^* \to \underline{B}$ be the restriction of α to B^* .
- <u>B</u> is a submonoid of M (and will be considered as an alphabet, too).
- $u = u_1 a u_2 a u_3$ with $a \notin alph(u_1 u_3)$ yields

$$\alpha^{-1}(s) = \bigcup_{a \in A, \alpha(a) \neq 1} \bigcup_{s=s_1 s_2 s_3} \beta^{-1}(s_1) \cdot (\alpha^{-1}(s_2) \cap aA^* \cap A^*a) \cdot \beta^{-1}(s_3)$$

By induction hypothesis, we have β⁻¹(s_i) star-free (|<u>B</u>| ≤ |M| and |B| < |A|).
 Therefore we are left to show α⁻¹(s) ∩ aA* ∩ A*a is star-free.

From Aperiodic to Star-free (3)

Proof of V. Diekert, M. Kufleitner (adapted from Th. Wilke)

- Let us show that $\alpha^{-1}(s) \cap aA^* \cap A^*a$ is star-free.
- Let \underline{B}^* be the free monoid over alphabet $\underline{B} = \alpha(B^*)$ (could have $|\underline{B}| > |A|$).
- "Decompose" α as $aA^* \xrightarrow{\sigma} B^* \xrightarrow{\gamma} (aM \cap Ma, \circ, a)$, as follows.
 - $\bullet \ \sigma(au_1au_2\cdots au_n) = \beta(u_1) \cdot \beta(u_2) \cdots \beta(u_n).$
 - γ morphism defined, for $b \in B$, by $\gamma(b) = aba$. Reintroduce it morphically!

Frase a

From Aperiodic to Star-free (3)

Proof of V. Diekert, M. Kufleitner (adapted from Th. Wilke)

- Let us show that $\alpha^{-1}(s) \cap aA^* \cap A^*a$ is star-free.
- Let \underline{B}^* be the free monoid over alphabet $\underline{B} = \alpha(B^*)$ (could have $|\underline{B}| > |A|$).
- ► "Decompose" α as $aA^* \xrightarrow{\sigma} \underline{B}^* \xrightarrow{\gamma} (\underline{a}M \cap M\underline{a}, \circ, \underline{a})$, as follows.
 - $\sigma(au_1au_2\cdots au_n) = \beta(u_1)\cdot\beta(u_2)\cdots\beta(u_n).$ Erase a
 - γ morphism defined, for $\underline{b} \in \underline{B}$, by $\gamma(\underline{b}) = \underline{aba}$. Reintroduce it morphically!
- Almost a factorization of α.

$$\alpha^{-1}(s) \cap aA^* \cap A^*a = \sigma^{-1}(\gamma^{-1}(s)).a$$

From Aperiodic to Star-free (3)

Proof of V. Diekert, M. Kufleitner (adapted from Th. Wilke)

- Let us show that $\alpha^{-1}(s) \cap aA^* \cap A^*a$ is star-free.
- Let \underline{B}^* be the free monoid over alphabet $\underline{B} = \alpha(B^*)$ (could have $|\underline{B}| > |A|$).
- ► "Decompose" α as $aA^* \xrightarrow{\sigma} \underline{B}^* \xrightarrow{\gamma} (\underline{a}M \cap M\underline{a}, \circ, \underline{a})$, as follows.
 - $\bullet \ \sigma(au_1au_2\cdots au_n) = \beta(u_1) \cdot \beta(u_2)\cdots \beta(u_n).$ Erase *a*
 - γ morphism defined, for $\underline{b} \in \underline{B}$, by $\gamma(\underline{b}) = \underline{aba}$. Reintroduce it morphically!
- Almost a factorization of α.

$$lpha^{-1}(s)\cap aA^*\cap A^*a\ =\ \sigma^{-1}(\gamma^{-1}(s)).a$$

- ▶ Since $|\underline{a}M \cap M\underline{a}| < |M|$, we get $\gamma^{-1}(s) \in SF(\underline{B}^*)$.
- It remains to show that σ^{-1} preserves star-freeness.
 - For a one-letter word $\underline{b} \in \underline{B}$, it holds $\sigma^{-1}(\underline{b}) = a\beta^{-1}(\underline{b})$: use |B| < |A|.
 - ▶ SF operators commute with σ^{-1} , eg., $\sigma^{-1}(K \cup L) = \sigma^{-1}(K) \cup \sigma^{-1}(L)$.

Summary

- Many classes of regular languages have an algebraic characterization.
- ► General framework given in Eilenberg-Reiterman theorem.
- ▶ Variety of regular languages $\mathcal{V} : A \mapsto A^* \mathcal{V}$, closed under
 - boolean combinations,
 - inverse image by homomorphisms $\varphi: A^* \to B^*$,
 - quotients $L \mapsto a^{-1}L$, $L \mapsto La^{-1}$.
- ▶ Variety of finite monoids: class closed under $(M, N) \mapsto M \times N$ and division.
- Eilenberg's theorem: Bijective correspondence between varieties of regular languages and varieties of monoids.
- ► Reiterman's theorem: Equational definition of varieties.

Extensions

- To other classes than varieties
 - Drop complement: Positive varieties (Pin)
 - Drop closure under quotients (Pippenberg)
 - Drop both (Polák)
 - General framework: duality (Gehrke, Grigorieff, Pin): definition by (in)equations/identities.

<ロ> (四) (四) (三) (三) (三)

▶ To other structures, like infinite words, Mazurkiewicz traces, trees.

Some related references

V. Diekert and P. Gastin. First-order definable languages. In J. Flum, E. Grädel, and T. Wilke, editors, Logic and Automata: History and Perspectives, volume 2 of Texts in Logic and Games, pages 261–306, Amsterdam University Press, 2008,

V. Diekert, P. Gastin, and M. Kufleitner. A survey on small fragments of first-order logic over finite words. Int. J. Found. Comp. Sci. (IJFCS), 19(3):513-548, 2008.

• O. Klíma. Piecewise testable languages via combinatorics on words. In *Words'09*, 2009.

J.-E. Pin. Syntactic semigroups. In G. Rozenberg and A. Salomaa, editors, Handbook of formal languages, vol. 1, pages 679-746. Springer, New York, NY, USA, 1997.

P. Tesson and D. Therien. Diamonds are forever: The variety DA. In Semigroups, Algorithms, Automata and Languages, Coimbra (Portugal) 2001, pages 475–500. World Scientific, 2002.

P. Tesson and D. Thérien. Logic meets algebra: the case of regular languages. Logical Methods in Computer Science, 3(1), 2007.

💓 W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa, editors, Handbook of formal languages, vol. 3: Beyond words, pages 389-455. Springer, 1997.

Th. Wilke. Classifying discrete temporal properties. In STACS'99, LNCS, pages 32-46. Springer, 1999.
Questions?

